1. Eruptive mass loss less than a year before the explosion of superluminous supernovae : I. The cases of SN 2020xga and SN 2022xgcA. Gkini, C. Fransson, Ragnhild Lunnan, S. Schulze, F. Poidevin, N. Sarin, R. Könyves-Tóth, Jesper Sollerman, Mateusz Bronikowski, Tanja Petrushevska, 2025, izvirni znanstveni članek Opis: We present photometric and spectroscopic observations of SN 2020xga and SN 2022xgc, two hydrogen-poor superluminous supernovae (SLSNe-I) at z = 0.4296 and z = 0.3103, respectively, which show an additional set of broad Mg II absorption lines, blueshifted by a few thousands kilometer second−1 with respect to the host galaxy absorption system. Previous work interpreted this as due to resonance line scattering of the SLSN continuum by rapidly expanding circumstellar material (CSM) expelled shortly before the explosion. The peak rest-frame g-band magnitude of SN 2020xga is −22.30 ± 0.04 mag and of SN 2022xgc is −21.97 ± 0.05 mag, placing them among the brightest SLSNe-I. We used high-quality spectra from ultraviolet to near-infrared wavelengths to model the Mg II line profiles and infer the properties of the CSM shells. We find that the CSM shell of SN 2020xga resides at ∼1.3 × 1016 cm, moving with a maximum velocity of 4275 km s−1, and the shell of SN 2022xgc is located at ∼0.8 × 1016 cm, reaching up to 4400 km s−1. These shells were expelled ∼11 and ∼5 months before the explosions of SN 2020xga and SN 2022xgc, respectively, possibly as a result of luminous-blue-variable-like eruptions or pulsational pair instability (PPI) mass loss. We also analyzed optical photometric data and modeled the light curves, considering powering from the magnetar spin-down mechanism. The results support very energetic magnetars, approaching the mass-shedding limit, powering these SNe with ejecta masses of ∼7 − 9 M⊙. The ejecta masses inferred from the magnetar modeling are not consistent with the PPI scenario pointing toward stars > 50 M⊙ He-core; hence, alternative scenarios such as fallback accretion and CSM interaction are discussed. Modeling the spectral energy distribution of the host galaxy of SN 2020xga reveals a host mass of 107.8 M⊙, a star formation rate of 0.96−0.26+0.47 M⊙ yr−1, and a metallicity of ∼0.2 Z⊙. Ključne besede: eruptive mass, loss, supernovae Objavljeno v RUNG: 04.03.2025; Ogledov: 571; Prenosov: 7
Celotno besedilo (33,61 MB) Gradivo ima več datotek! Več... |
2. Time vs drought : leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot NoirElena Farolfi, Jan Reščič, 2023, objavljeni povzetek znanstvenega prispevka na konferenci Opis: Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD). Via pressure-volume (PV) curves and osmometer measurements we derived the leaf osmotic adjustment capability and TLP, while monitoring the plant gas exchange and water potential. Surprisingly, lower water potentials in WD vines throughout the season and in all situations (field and greenhouse) did not trigger osmoregulation, changes in TLP nor a modification of the modulus of elasticity. PV curves provided clear evidence that both temperature and water availability do not stimulate active osmotic adjustment in Vitis vinifera cv. Pinot Noir. Conversely, there is a clear impact of seasonal osmoregulation throughout the growing season2, decreasing the osmotic potential at full turgor by an average of 0.46 MPa in 90 days. Lack of osmotic adjustment in response to drought observed in this cultivar suggests Vitis genotypes have a broad spectrum of responses to drought and the strategy adopted to cope with it is highly dependent on the cultivar under analysis. Ključne besede: grapevine, drought, osmotic adjustment, osmoregulation, turgor loss point Objavljeno v RUNG: 21.11.2023; Ogledov: 2325; Prenosov: 3
Povezava na datoteko Gradivo ima več datotek! Več... |