Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


21 - 30 / 66
Na začetekNa prejšnjo stran1234567Na naslednjo stranNa konec
21.
22.
Testing the predictions of axisymmetric distribution functions of galactic dark matter with hydrodynamical simulations
Mihael Petač, Julien Lavalle, Arturo Núñez-Castiñeyra, Emmanuel Nezri, 2021, izvirni znanstveni članek

Opis: Signal predictions for galactic dark matter (DM) searches often rely on assumptions regarding the DM phase-space distribution function (DF) in halos. This applies to both particle (e.g. p-wave suppressed or Sommerfeld-enhanced annihilation, scattering off atoms, etc.) and macroscopic DM candidates (e.g. microlensing of primordial black holes). As experiments and observations improve in precision, better assessing theoretical uncertainties becomes pressing in the prospect of deriving reliable constraints on DM candidates or trustworthy hints for detection. Most reliable predictions of DFs in halos are based on solving the steady-state collisionless Boltzmann equation (e.g. Eddington-like inversions, action-angle methods, etc.) consistently with observational constraints. One can do so starting from maximal symmetries and a minimal set of degrees of freedom, and then increasing complexity. Key issues are then whether adding complexity, which is computationally costy, improves predictions, and if so where to stop. Clues can be obtained by making predictions for zoomed-in hydrodynamical cosmological simulations in which one can access the true (coarse-grained) phase-space information. Here, we test an axisymmetric extension of the Eddington inversion to predict the full DM DF from its density profile and the total gravitational potential of the system. This permits to go beyond spherical symmetry, and is a priori well suited for spiral galaxies. We show that axisymmetry does not necessarily improve over spherical symmetry because the (observationally unconstrained) angular momentum of the DM halo is not generically aligned with the baryonic one. Theoretical errors are similar to those of the Eddington inversion though, at the 10-20% level for velocity-dependent predictions related to particle DM searches in spiral galaxies. We extensively describe the approach and comment on the results.
Ključne besede: galaxy dynamics, dark matter experiments, dark matter simulations, dark matter theory, cosmology, nongalactic astrophysics, astrophysics of galaxies, high energy physics
Objavljeno v RUNG: 01.10.2021; Ogledov: 1895; Prenosov: 64
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

23.
Two-integral distribution functions in axisymmetric galaxies: Implications for dark matter searches
Mihael Petač, Piero Ullio, 2019, izvirni znanstveni članek

Opis: We address the problem of reconstructing the phase-space distribution function for an extended collisionless system, with known density profile and in equilibrium within an axisymmetric gravitational potential. Assuming that it depends on only two integrals of motion, namely the energy and the component of the angular momentum along the axis of symmetry Lz , there is a one-to-one correspondence between the density profile and the component of the distribution function that is even in Lz, as well as between the weighted azimuthal velocity profile and the odd component. This inversion procedure was originally proposed by Lynden-Bell and later refined in its numerical implementation by Hunter and Qian; after overcoming a technical difficulty, we apply it here for the first time in presence of a strongly flattened component, as a novel approach of extracting the phase-space distribution function for dark matter particles in the halo of spiral galaxies. We compare results obtained for realistic axisymmetric models to those in the spherical symmetric limit as assumed in previous analyses, showing the rather severe shortcomings in the latter. We then apply the scheme to the Milky Way and discuss the implications for the direct dark matter searches. In particular, we reinterpret the null results of the Xenon1T experiment for spin-(in)dependent interactions and make predictions for the annual modulation of the signal for a set of axisymmetric models, including a self-consistently defined corotating halo.
Ključne besede: dark matter, astrophysics of galaxies, high energy physics, phenomenology
Objavljeno v RUNG: 01.10.2021; Ogledov: 1748; Prenosov: 0
Gradivo ima več datotek! Več...

24.
Equilibrium axisymmetric halo model for the Milky Way and its implications for direct and indirect dark matter searches
Mihael Petač, 2020, izvirni znanstveni članek

Opis: We for the first time provide self-consistent axisymmetric phase-space distribution models for the Milky Way's dark matter (DM) halo which are carefully matched against the latest kinematic measurements through Bayesian analysis. By using broad priors on the individual galactic components, we derive conservative estimates for the astrophysical factors entering the interpretation of direct and indirect DM searches. While the resulting DM density profiles are in good agreement with previous studies, implying ρ⊙≈10-2 M⊙/pc3, the presence of baryonic disc leads to significant differences in the local DM velocity distribution in comparison with the standard halo model. For direct detection, this implies roughly 30% stronger cross section limits at DM masses near detectors maximum sensitivity and up to an order of magnitude weaker limits at the lower end of the mass range. Furthermore, by performing Monte Carlo simulations for the upcoming DARWIN and DarkSide-20k experiments, we demonstrate that upon successful detection of heavy DM with coupling just below the current limits, the carefully constructed axisymmetric models can eliminate bias and reduce uncertainties by more then 50% in the reconstructed DM coupling and mass, but also help in a more reliable determination of the scattering operator. Furthermore, the velocity anisotropies induced by the baryonic disc can lead to significantly larger annual modulation amplitude and sizable differences in the directional distribution of the expected DM-induced events. For indirect searches, we provide the differential J factors and compute several moments of the relative velocity distribution that are needed for predicting the rate of velocity-dependent annihilations. However, we find that accurate predictions are still hindered by large uncertainties regarding the DM distribution near the galactic center.
Ključne besede: dark matter, astrophysics, galaxies, high energy physics, experiments, phenomenology
Objavljeno v RUNG: 01.10.2021; Ogledov: 1726; Prenosov: 41
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

25.
On velocity-dependent dark matter annihilations in dwarf satellites
Mihael Petač, Piero Ullio, Mauro Valli, 2018, izvirni znanstveni članek

Opis: Milky Way dwarf spheroidal satellites are a prime target for Dark Matter (DM) indirect searches. There have been recent reassessments of the expected DM gamma-ray signals in case of long-range interactions, commonly known as Sommerfeld enhancement. Since details of the underlying DM phase-space distribution function become critical, there are potentially large uncertainties in the final result. We provide here a first attempt towards a comprehensive investigation of these systematics, addressing the impact on the expected DM flux from Milky Way dwarfs via Bayesian inference on the available stellar kinematic datasets. After reconsidering the study case of ergodic systems, we investigate for the first time scenarios where DM particle orbits may have a radial or tangential bias. We consider both cuspy and cored parametric DM density profiles, together with the case of a non-parametric halo modelling directly connected to line-of-sight observable quantities. The main findings of our work highlight the relevance of the assumed phase-space distribution: Referring to a generalized J-factor, namely the line-of-sight convolution of the spatial part in case of velocity-dependent annihilation rate, an enhancement (suppression) with respect to the limit of isotropic phase-space distributions is obtained for the case of tangentially (radially) biased DM particle orbits. We provide new estimates for J-factors for the eight brightest Milky Way dwarfs also in the limit of velocity-independent DM annihilation, in good agreement with previous results in literature, and derive data-driven lower-bounds based on the non-parametric modelling of the halo density. The outcome of our broad study stands out as a representative of the state-of-the-art in the field, and falls within the interest of current and future experimental collaborations involved in DM indirect detection programs.
Ključne besede: dark matter, indirect detection, dwarf satellites, sommerfeld enhancement, gamma-rays
Objavljeno v RUNG: 01.10.2021; Ogledov: 1556; Prenosov: 43  (1 glas)
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

26.
Extending the sample of core-collapse supernovae forsearches of axion-like-particle induced gamma-ray burstswith the Fermi LAT
Manuel Meyer, Tanja Petrushevska, 2021, objavljeni znanstveni prispevek na konferenci

Ključne besede: dark matter, axions, supernovae
Objavljeno v RUNG: 06.07.2021; Ogledov: 1847; Prenosov: 3
.pdf Celotno besedilo (2,32 MB)

27.
Studying dark matter annihilation in Perseus galaxy cluster using very-high-energy gamma rays : master's thesis
Nemanja Ivković, 2020, magistrsko delo

Ključne besede: dark matter, gamma-ray astrophysics
Objavljeno v RUNG: 01.03.2021; Ogledov: 2548; Prenosov: 0
Gradivo ima več datotek! Več...

28.
Study of axion-like particles signatures in the very-high-energy gamma-ray spectra of Active Galactic Nuclei : master's thesis
Ivana Batković, 2020, magistrsko delo

Ključne besede: axions, dark matter, gamma-ray astrophysics
Objavljeno v RUNG: 26.02.2021; Ogledov: 2577; Prenosov: 0
Gradivo ima več datotek! Več...

29.
30.
Searching for cosmic-ray signals from decay of fermionic dark matter with CALET
Saptashwa Bhattacharyya, Holger Motz, Shoji Torii, Yoichi Asaoka, 2017, objavljeni znanstveni prispevek na konferenci

Ključne besede: dark matter, cosmic-rays, CALET
Objavljeno v RUNG: 08.02.2021; Ogledov: 2003; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh