Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 12
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
Reconstructing air-shower observables using a universality-based model
Maximilian Stadelmaier, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, objavljeni znanstveni prispevek na konferenci

Opis: Air-Shower universality describes the regularity in the longitudinal, lateral, and energy distributions of electromagnetic shower particles, as motivated by solutions of the cascade equations. To reconstruct air-shower observables from ultra-high-energy cosmic rays, we employ a universality-based model of shower development that incorporates hadronic particle components. Depending on the input parameters, the model can be used, for example, to estimate the depth of the shower maximum or the number of muons on event level. In this context, we present the expected performance for the reconstruction using air-shower simulations and data from the Pierre Auger Observatory.
Ključne besede: ultra-high-energy cosmic rays, extensive air showers, air-shower universality, Pierre Auger Observatory, UHECR event reconstruction, air-shower maximum depth, muonic shower component
Objavljeno v RUNG: 09.06.2025; Ogledov: 375; Prenosov: 7
.pdf Celotno besedilo (1,03 MB)
Gradivo ima več datotek! Več...

2.
Measuring the proton-proton interaction cross section with hybrid data of the Pierre Auger Observatory
Olena Tkachenko, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, objavljeni znanstveni prispevek na konferenci

Opis: The depth of the maximum of an air shower development, Xmax, as observed with fluorescence telescopes, is among the most sensitive observables for studying the interaction characteristics and primary composition of ultra-high-energy cosmic rays. However, precise measurement of the interaction cross section remains challenging, as standard analyses often rely on assumptions about the composition, which are closely tied to the validity of specific hadronic interaction models. In this work, we discuss a method for the simultaneous estimation of the proton-proton interaction cross section and primary mass composition, addressing the limitations of separate measurements. The inclusion of the Xmax scale into the fit further accounts for systematic uncertainties in the data and theoretical uncertainties in particle production. The performance of the method is evaluated using simulations that include detector responses under realistic conditions and with a particular focus on assessing the systematic uncertainties of the fit.
Ključne besede: ultra-high-energy cosmic rays, Pierre Auger Observatory, extensive air showers, air shower maximum depth
Objavljeno v RUNG: 28.03.2025; Ogledov: 611; Prenosov: 11
.pdf Celotno besedilo (3,00 MB)
Gradivo ima več datotek! Več...

3.
Inference of the Mass Composition of Cosmic Rays with Energies from 10[sup]18.5 to 10[sup]20 eV Using the Pierre Auger Observatory and Deep Learning
A. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, izvirni znanstveni članek

Opis: We present measurements of the atmospheric depth of the shower maximum Xmax, inferred for the first time on an event-by-event level using the Surface Detector of the Pierre Auger Observatory. Using deep learning, we were able to extend measurements of the Xmax distributions up to energies of 100 EeV (10[sup]20 eV), not yet revealed by current measurements, providing new insights into the mass composition of cosmic rays at extreme energies. Gaining a 10-fold increase in statistics compared to the Fluorescence Detector data, we find evidence that the rate of change of the average Xmax with the logarithm of energy features three breaks at 6.5 ± 0.6 (stat) ± 1 (sys) EeV, 11 ± 2 (stat) ± 1 (sys) EeV, and 31 ± 5 (stat) ± 3 (sys) EeV, in the vicinity to the three prominent features (ankle, instep, suppression) of the cosmic-ray flux. The energy evolution of the mean and standard deviation of the measured Xmax distributions indicates that the mass composition becomes increasingly heavier and purer, thus being incompatible with a large fraction of light nuclei between 50 EeV and 100 EeV.
Ključne besede: ultra-high-energy cosmic rays (UHECRs), extensive air showers, Pierre Auger Observatory, UHECR mass composition, depth of the shower maximum, fluorescence detector, surface detector, deep learning
Objavljeno v RUNG: 20.01.2025; Ogledov: 955; Prenosov: 6
.pdf Celotno besedilo (586,04 KB)
Gradivo ima več datotek! Več...

4.
Measurement of the depth of maximum of air-shower profiles with energies between ▫$10^{18.5} and 10^{20}$▫ eV using the surface detector of the Pierre Auger Observatory and deep learning
A. Abdul Halim, P. Abreu, M. Aglietta, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, izvirni znanstveni članek

Opis: We report an investigation of the mass composition of cosmic rays with energies from 3 to 100 EeV (1 EeV = 10[sup]18 eV) using the distributions of the depth of shower maximum Xmax. The analysis relies on ∼50,000 events recorded by the surface detector of the Pierre Auger Observatory and a deep-learning-based reconstruction algorithm. Above energies of 5 EeV, the dataset offers a 10-fold increase in statistics with respect to fluorescence measurements at the Observatory. After cross-calibration using the fluorescence detector, this enables the first measurement of the evolution of the mean and the standard deviation of the Xmax distributions up to 100 EeV. Our findings are threefold: (i) The evolution of the mean logarithmic mass toward a heavier composition with increasing energy can be confirmed and is extended to 100 EeV. (ii) The evolution of the fluctuations of Xmax toward a heavier and purer composition with increasing energy can be confirmed with high statistics. We report a rather heavy composition and small fluctuations in Xmax at the highest energies. (iii) We find indications for a characteristic structure beyond a constant change in the mean logarithmic mass, featuring three breaks that are observed in proximity to the ankle, instep, and suppression features in the energy spectrum.
Ključne besede: ultra-high-energy cosmic rays, UHECRs, extensive air showers, Pierre Auger Observatory, UHECR mass composition, depth of shower maximum, fluorescence detector, surface detector, deep learning
Objavljeno v RUNG: 20.01.2025; Ogledov: 958; Prenosov: 8
.pdf Celotno besedilo (2,71 MB)
Gradivo ima več datotek! Več...

5.
Probing hadronic interactions using the latest data measured by the Pierre Auger Observatory
Caterina Trimarelli, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, objavljeni znanstveni prispevek na konferenci

Opis: The Pierre Auger Observatory is the world’s largest ultra-high energy cosmic ray observatory. Its hybrid detection technique combines the observation of the longitudinal development of extensive air showers and the lateral distribution of particles arriving at the ground. In this contribution, a review of the latest results on hadronic interactions using measurements from the Pierre Auger Observatory is given. In particular, we report on the self-consistency tests of the post-LHC models using measurements of the depth of the shower maximum and the main features of the muon component at the ground. The tensions between the model predictions and the data, considering different shower observables, are reviewed.
Ključne besede: ultra-high-energy cosmic rays, hadronic interactions, extensive air showers, maximum depth, EAS muon content, Pierre Auger Observatory, post-LHC hadronic interaction models
Objavljeno v RUNG: 04.10.2024; Ogledov: 1292; Prenosov: 8
.pdf Celotno besedilo (1,97 MB)
Gradivo ima več datotek! Več...

6.
7.
8.
9.
10.
Report of the Working Group on the Composition of Ultra-High Energy Cosmic Rays
Michael Unger, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci

Opis: The atmospheric depth, Xmax, at which the particle number of an air shower reaches its maximum is a good indicator for the mass of the primary particle. We present a comparison of the energy evolution of the mean of Xmax as measured by the Telescope Array and c Collaborations. After accounting for the different resolutions, acceptances and analysis strategies of the two experiments, the two results are found to be in good agreement within systematic uncertainties.
Ključne besede: Pierre Auger Observatory, Telescope Array, Ultra-High Energy Cosmic Rays, elemental composition, extensive air showers, the atmospheric depth of the air shower maximum
Objavljeno v RUNG: 08.03.2016; Ogledov: 6071; Prenosov: 238
.pdf Celotno besedilo (329,86 KB)

Iskanje izvedeno v 0.03 sek.
Na vrh