Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 6 / 6
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Amorphous alumina nanocomposite : the effect of surface, interface and bulk stress
Andraž Mavrič, Chunhua Cui, Matjaž Valant, 2019, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: alumina nanocomposite, surfaces
Objavljeno v RUNG: 10.02.2020; Ogledov: 2836; Prenosov: 0
Gradivo ima več datotek! Več...

2.
Photoactive nanocomposite thin films on glass and thermosensitive substrates
Nives Vodišek, 2019, doktorska disertacija

Opis: Photocatalysis is a well-known process for the last few decades; it is predominantly used for water and air purification, but also for self-cleaning and antibacterial surfaces. The photocatalytic process is one of the advanced oxidation processes, where semiconductors are mainly used as photocatalysts. The most known and used semiconductor is nanosized titania, which can non-selectively decompose organic matters. One of the side effects of nano TiO2 under UV irradiation is photoinduced hydrophilicity, which furthermore improves the self-cleaning effect. The main drawback of TiO2 is that for its activation UV light is needed, which represents only 5 percent of the solar spectrum. Consequently, actinic irradiance power is low and the response of photocatalyst is limited. Novel approaches are being introduced to improve TiO2 response to visible light such as doping, coupling, modification of surface morphology and others. The thesis consists of five principal chapters. The first chapter is focused on a short literature review and explanation of some basic terms and principles that are related to this thesis. The aim of the research was to prepare transparent photocatalytically active thin films on glass and thermosensitive substrates. Four thermosensitive substrates were used: polyvinyl chloride (PVC) foil, polymethyl methacrylate (PMMA) sheet and polyester (PES) fabric coated with a polyvinyl and acrylic coating, with (D1) or without (D2) an additional polyvinylidene fluoride topcoat. The synthesis of films was modified with the introduction of zirconium aiming at improving the photocatalytic activity of the TiO2 films, and the final films had a SiO2 phase present for increased mechanical robustness. The third chapter is dedicated to the experimental part of the thesis. The detailed process of synthesis is described. The sol-gel process was used to prepare initial Ti-Zr sols, colloidal aqueous solutions with TiO2 and ZrO2 nanoparticles derived from titanium and zirconium alkoxides. The four different Ti-Zr sols were prepared with 0, 5, 10 and 20 molar % of Zr according to Ti. The depositing solution was prepared by mixing Ti-Zr sol, SiO2 sol binder, 1-propanol and 2-propoxyethanol, and then thin films were deposited by dip-coating technique. After the deposition, samples did not require high-temperature calcination since the photocatalytic anatase phase was present already after drying the deposited layers. Coated glass slides were put into a furnace at 150 °C, while samples on thermosensitive substrates were just treated by a heat gun. Samples in powder and thin film form were characterized by UV-Vis, FTIR-ATR and laser beam deflection spectroscopy, X-ray diffraction, scanning electron microscopy and thermal analysis. One of the main aspects of the photocatalyst is its activity. Photocatalytic activity of the thin films was determined, either quantitatively by the formation of fluorescent hydroxyterephthalic acid, one of the first degradation products of terephthalic acid deposit, or qualitatively by a visual-based method where degradation of resazurin ink was observed. Two additional methods were used on glass samples, electron paramagnetic resonance, and degradation of methyl stearate by observing the change in water contact angle under UVA irradiation. Mechanical stability of films on various substrates is an essential factor, describing how successful was immobilization of the photocatalytic materials on the substrate. It was determined by the pencil hardness test, i.e., Wolff-Wilborn method. In the fourth chapter, titled “Results and Discussion,” the most important part of the thesis is placed. Materials characterization and associated discussion of the results are divided into three major parts: i) powder samples characterization; ii) characterization of thin films on a glass substrate, and iii) characterization of films on thermosensitive substrates. In the conclusions, the main findings of the Ph.D. research work are summarized. One of our initial hypotheses was disapproved, thin films were not more active with a higher content of zirconium. However, they were more durable. All the obtained films were transparent and photoactive, despite the low-temperature synthesis procedure. Besides commonly used glass substrate, immobilization on thermosensitive substrates was also successful.
Ključne besede: glass substrate, immobilization, nanocomposite, nanomaterials, PES, photocatalysis, PMMA, PVC, self-cleaning surfaces, silica, plastic substrates, thin films, titania, zirconia
Objavljeno v RUNG: 14.10.2019; Ogledov: 3838; Prenosov: 183
.pdf Celotno besedilo (6,23 MB)

3.
High-temperature stabilization of bulk amorphous Al2O3
Andraž Mavrič, Mattia Fanetti, Gregor Mali, Matjaž Valant, 2018, izvirni znanstveni članek

Opis: We present a method for high temperature stabilization of bulk amorphous aluminium oxide. The stabilization is achieved by dispersing polysilane dendritic molecules in aluminium hydroxide gel, which upon thermal treatment gives amorphous aluminium oxide stable up to 900 °C. The dispersed macromolecules covalently bind to the alumina matrix and induce homogeneously distributed strain fields that keep the alumina amorphous. The thermal conversion of the precursor system was followed by thermogravimetry with an evolved gas analysis, infrared spectroscopy and 29Si NMR. The amorphous structure of aluminium oxide was confirmed with an X-ray and electron diffraction. Additionally, the amorphous state was supported by presence of penta-coordinated aluminium detected by 27Al NMR and a low bandgap measured by a UV–visible absorption spectroscopy.
Ključne besede: Amorphous aluminium oxide, Polysilane, Nanocomposite, Stabilization
Objavljeno v RUNG: 30.07.2018; Ogledov: 4247; Prenosov: 16
.pdf Celotno besedilo (2,67 MB)

4.
Amorphous nanocomposite of polycarbosilanes and aluminum oxide
Andraž Mavrič, 2018, doktorska disertacija

Opis: This work presents a paradigm for high temperature stabilization of bulk amorphous aluminium oxide. The thermodynamic stabilization is achieved by preparing a nanocomposite, where polymethylsilane dendritic molecules are dispersed in an aluminium hydroxide gel. Upon heat-treatment the gel transforms to the amorphous aluminium oxide that is stable up to 900°C. The dispersion of the macromolecules and their covalent bonding to the alumina matrix induce homogeneously distributed strain fields that keep the alumina amorphous. The first part of the thesis focuses on the synthesis, characterization and solubility properties of the dendritic polymethylsilane. The polymethylsilane is synthetized by electrochemical polymerization from trichloromethylsilane monomer. The polymerization mechanism, involving a single polymerization pathway, is identified. The polymer growth proceeds through reduction of the monomers to the silyl anions and their addition to the growing polymer. The solubility of three chemically related but topologically different polysilanes (linear, dendritic and network) were studied by dynamic light scattering. At room temperature the agglomerates in a range from 500 to 1300 nm are present. They undergo de-agglomeration at slightly elevated temperatures of around 40°C. The de-agglomeration results in formation of stable solutions, where a hydrodynamic diameter of the individual polymer molecules was measured to be in a range from 20 to 40 nm. The obtained diameters of two dendritic polymethylsilane macromolecules, synthesized under different electrolysis conditions, are much larger than the theoretical size estimated for an ideal dendrimer. We determined by 29Si NMR that the reason for this is in a large number of branching irregularities (defects) contained in the molecular structure. Combining the experimental values obtained by DLS and density measurements with a structural model that considers the branching irregularities, it is shown that the inclusion of the defects allows the dendritic polymer to exceed the sterical limitations and form the hyperbranched dendritic structure. The final size depends on a relative amount of the branching defects. In the second part, the synthetized polymethylsilane molecules were successfully used for the nanocomposite formation. The aluminium hydroxide gel with the dispersed polymethylsilane molecules was prepared as a precursor. Upon heat-treatment it gives the amorphous aluminium oxide stable up to 900°C. The dispersed macromolecules induce homogeneously distributed strain fields that keep the aluminium oxide amorphous during the thermal treatment the dispersed macromolecules covalently bind to the matrix, inducing the interface strain. The amorphous state was confirmed by the presence of penta-coordinated aluminium detected by 27Al NMR and a low bandgap measured by UV-vis absorption spectroscopy.
Ključne besede: amorphous aluminium oxide, polymethylsilane, nanocomposite, electropolymerization, solubility, agglomeration, de-agglomeration, dendrimer, hyperbranched dendritic structure, dynamic light scattering, thermal analysis, transmission electron microscopy, scanning electron microscopy, X-ray diffraction, infrared spectroscopy, UV-Vis spectroscopy
Objavljeno v RUNG: 19.07.2018; Ogledov: 6002; Prenosov: 210
.pdf Celotno besedilo (5,07 MB)

5.
Design of a highly photocatalytically active ZnO/CuWO4 nanocomposite
Saim Emin, Matjaž Valant, 2017, objavljeni povzetek znanstvenega prispevka na konferenci (vabljeno predavanje)

Opis: We report the synthesis, photocatalytic activity and mechanistic study of a novel heterostructure (HTS) with an efficient charge separation. A ZnO/CuWO4 HTS material is reported for the first time. The nanocomposite (NC) consists of CuWO4 nanoparticles (ca. 200-400 nm) decorated with ZnO nanorods (ca. 30 nm, 100 nm length) and is shown to be a highly active photocatalyst for decomposition of model contaminants including methyl orange and terephthalic acid. The ZnO/CuWO4 interface is shown to be the key for controlling the enhanced activity of the composite material. Transient absorption spectroscopy studies demonstrated that a photoinduced charge transfer across the ZnO/CuWO4 interface increased electron-hole lifetime by 3 orders of magnitude, from < 20 s in ZnO to 30 ms in the ZnO/CuWO4 NC sample. Our findings show that through interface design efficient HTS materials can be prepared for a wide range of photocatalytic applications.
Ključne besede: CuWO4, nanocomposite, transient absorption spectroscopy
Objavljeno v RUNG: 28.08.2017; Ogledov: 4985; Prenosov: 0
Gradivo ima več datotek! Več...

6.
Design of a highly photocatalytically active ZnO/CuWO4 nanocomposite
Matjaž Valant, 2016, izvirni znanstveni članek

Ključne besede: Photocatalysis Heterostructure Nanocomposite Methyl orange Terephthalic acid
Objavljeno v RUNG: 08.09.2016; Ogledov: 4737; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.04 sek.
Na vrh