Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 10
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
ULTRAFAST ELECTRON DYNAMICS IN CORRELATED SYSTEMS PROBED BY TIME-RESOLVED PHOTOEMISSION SPECTROSCOPY
Tanusree Saha, 2023, doktorska disertacija

Opis: Complex systems in condensed matter are characterized by strong coupling between different degrees of freedom constituting a solid. In materials described by many-body physics, these interactions may lead to the formation of new ground states such as excitonic insulators, Mott insulators, and charge and spin density waves. However, the inherent complexity in such materials poses a challenge to identifying the dominant interactions governing these phases using equilibrium studies. Owing to the distinct timescales associated with the elementary interactions, such complexities can be readily addressed in the non-equilibrium regime. Additionally, these materials might also show the emergence of new, metastable “hidden“ phases under non-equilibrium. The thesis investigates the ultrafast timescales of fundamental interactions in candidate systems by employing time-and angle-resolved photoemission spectroscopy in the femtosecond time domain. In the (supposed) excitonic insulator model system Ta2NiSe5, the timescale of band gap closure and the dependence of rise time (of the photoemission signal) on the photoexcitation strength point to a predominantly electronic origin of the band gap at the Fermi level. The charge density wave (CDW) - Mott insulator 1T-TaS2 undergoes photoinduced phase transition to two different phases. The initial one is a transient phase which resembles the systems’s high temperature equilibrium phase, followed by a long-lived “hidden“ phase with a different CDW amplitude and is primarily driven by the CDW lattice order. For the spin density wave system CaFe2As2 where multiple bands contribute in the formation of Fermi surfaces, selective photoexcitation was used to disentangle the role played by different electron orbitals. By varying the polarization of photoexcitation pulses, it is observed that dxz/dyz orbitals primarily contribute to the magnetic ordering while the dxy orbitals have dominant role in the structural order. The findings of the present study provide deeper perspectives on the underlying interactions in complex ground phases of matter, therefore, initiating further experimental and theoretical studies on such materials.
Ključne besede: complex systems, charge density wave, excitonic insulator, metastable phase, Mott insulator, non-equilibrium, spin density wave, timescales, time- and angle-resolved photoemission, ultrafast dynamics
Objavljeno v RUNG: 01.06.2023; Ogledov: 1314; Prenosov: 26
.pdf Celotno besedilo (13,34 MB)

2.
Implementation of a Markov Chain Monte Carlo method to inorganic aerosol modeling of observations from the MCMA-2003 campaign : part II
F. M. San Martini, E. J. Dunlea, R. M. Volkamer, T. B. Onasch, J. Jayne, M. R. Canagaratna, D. Worsnop, C. E. Kolb, J. H. Shorter, Katja Džepina, 2006, izvirni znanstveni članek

Opis: A Markov Chain Monte Carlo model for integrating the observations of inorganic species with a thermodynamic equilibrium model was presented in Part I of this series. Using observations taken at three ground sites, i. e. a residential, industrial and rural site, during the MCMA-2003 campaign in Mexico City, the model is used to analyze the inorganic particle and ammonia data and to predict gas phase concentrations of nitric and hydrochloric acid. In general, the model is able to accurately predict the observed inorganic particle concentrations at all three sites. The agreement between the predicted and observed gas phase ammonia concentration is excellent. The NOz concentration calculated from the NOy, NO and NO2 observations is of limited use in constraining the gas phase nitric acid concentration given the large uncertainties in this measure of nitric acid and additional reactive nitrogen species. Focusing on the acidic period of 9-11 April identified by Salcedo et al. ( 2006), the model accurately predicts the particle phase observations during this period with the exception of the nitrate predictions after 10: 00 a. m. ( Central Daylight Time, CDT) on 9 April, where the model underpredicts the observations by, on average, 20%. This period had a low planetary boundary layer, very high particle concentrations, and higher than expected nitrogen dioxide concentrations. For periods when the particle chloride observations are consistently above the detection limit, the model is able to both accurately predict the particle chloride mass concentrations and provide well-constrained HCl ( g) concentrations. The availability of gas-phase ammonia observations helps constrain the predicted HCl ( g) concentrations. When the particles are aqueous, the most likely concentrations of HCl ( g) are in the sub-ppbv range. The most likely predicted concentration of HCl ( g) was found to reach concentrations of order 10 ppbv if the particles are dry. Finally, the atmospheric relevance of HCl ( g) is discussed in terms of its indicator properties for the possible influence of chlorine-mediated photochemistry in Mexico City.
Ključne besede: secondary organic aerosols, Mexico City, MCMA-2003 field campaign, thermodynamic equilibrium
Objavljeno v RUNG: 11.04.2021; Ogledov: 2147; Prenosov: 0
Gradivo ima več datotek! Več...

3.
Mismatch of supply and demand as a response to demand uncertainty
Alexander Shapoval, Vasily M. Goncharenko, 2016, izvirni znanstveni članek

Ključne besede: general equilibrium, monopolistic competition
Objavljeno v RUNG: 07.04.2021; Ogledov: 2211; Prenosov: 0
Gradivo ima več datotek! Več...

4.
Linguistic equilibrium with local and world languages : challenges of globalisation
Denis Davydov, Alexander Shapoval, Shlomo Weber, 2018, izvirni znanstveni članek

Opis: In this paper we introduce a model of a society with two distinct linguistic groups, each consisting of heterogeneous individuals speaking their native language. There is also a world language so that every individual is faced with four learning choices: to study the other local language only, to study the world language only, to study both, and to refrain from studying either language. We examine the Nash equilibiria of that game determined by communicative benefits (Selten & Pool), and address inefficiency of the equilibrium. We then show that government subsidies for language learning could serve as welfare‐enhancing policies. Finally, we analyze the three‐language policy, certain variants of which have been adopted in multilingual countries or regions.
Ključne besede: three-language formula, Nash equilibrium, inefficiency
Objavljeno v RUNG: 07.04.2021; Ogledov: 1869; Prenosov: 95
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

5.
6.
Modeling of necessity entrepreneurship via general equilibrium approach
Maria Fomenko, Alexander Shapoval, 2019, objavljeni znanstveni prispevek na konferenci

Ključne besede: necessity entrepreneurs, occupational choice, general equilibrium mode
Objavljeno v RUNG: 07.04.2021; Ogledov: 1697; Prenosov: 60
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

7.
Valence influence in electoral competition with rank objectives
Alexander Shapoval, Shlomo Weber, Alexei Zakharov, 2019, izvirni znanstveni članek

Ključne besede: valence, candidates, electoral games, rank objectives, electoral equilibrium, distribution of ideal points
Objavljeno v RUNG: 23.03.2021; Ogledov: 2074; Prenosov: 0
Gradivo ima več datotek! Več...

8.
A game-theoretical model of the landscape theory
Michel Le Breton, Alexander Shapoval, Shlomo Weber, 2021, izvirni znanstveni članek

Ključne besede: landscape theory, landscape equilibrium, blocs, gradual deviation, potential functions, hedonic games
Objavljeno v RUNG: 16.03.2021; Ogledov: 1897; Prenosov: 0
Gradivo ima več datotek! Več...

9.
Self-amplified photo-induced gap quenching in a correlated electron material
Mathias Stefan, Eich Steffen, Jurij Urbančič, 2016, izvirni znanstveni članek

Opis: Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe 2 , our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation. Self-amplified photo-induced gap quenching in a correlated electron material. Available from: https://www.researchgate.net/publication/308804379_Self-amplified_photo-induced_gap_quenching_in_a_correlated_electron_material [accessed Apr 20, 2017].
Ključne besede: high harmonic generation, charge-density wave material, 1T-TiSe2, non-equilibrium electron dynamics, ultrafast surface science
Objavljeno v RUNG: 20.04.2017; Ogledov: 5473; Prenosov: 0
Gradivo ima več datotek! Več...

10.
ASSESSMENT OF EFFECTIVE DOSES BASED ON VARIOUS RADON MEASURING TECHNIQUES
Nataša Smrekar, 2016, magistrsko delo

Opis: In my master's thesis, I have focused on radon gas in 43 buildings used for different purposes (23 schools, 3 kindergartens, 16 offices and a residential house) in which preliminary measurements had shown higher concentrations of radon gas. I carried out measurements of radon and short-lived radon products whilst simultaneously employing different measurement techniques. In all 43 buildings, I measured the instantaneous concentration of radon by using scintillation cells; in 18 buildings, I additionally measured the average concentration of radon by using solid state nuclear track detectors and in 10 buildings, I measured concentration retrospectively with solid state nuclear track detectors. In four selected buildings (a school, a kindergarten, an office and a residential house), I carried out the measurements by using all of the available equipment. I monitored the daily fluctuations of concentration of radon and short-lived radon products by using continuous monitors in 14 buildings. This is how I obtained the factor of radioactive equilibrium between radon and its short-lived products. Based on the results obtained, I calculated the effective doses. As the basis for calculating the doses, I used the instantaneous and average concentrations of radon and the equilibrium factor taken from literature (0.40) or own measurements. I compared the doses and critically evaluated them. In contrast to the previous research, I researched radon exclusively in areas with increased risk for radon. I studied the influence of the working regime on the concentration of radon in different working environments (i.e. a school, a kindergarten and an office).
Ključne besede: Radon, short-lived radon products, measurement technique, scintillation cell, solid-state nuclear track detector, retrospective detector, equilibrium factor, effective dose, comparison.
Objavljeno v RUNG: 28.09.2016; Ogledov: 6218; Prenosov: 283
.pdf Celotno besedilo (1,86 MB)

Iskanje izvedeno v 0.05 sek.
Na vrh