Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 5 / 5
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
2.
3.
Optical absorption properties of mineral dust particles generated by storm events in a desert environment
Bálint Alföldy, Mohamed M. Mahfouz, Matic Ivančič, Asta Gregorič, Martin Rigler, 2021, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: mineral dust, optical absorption
Objavljeno v RUNG: 17.11.2021; Ogledov: 2368; Prenosov: 55
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

4.
OXYGEN-EXCESS RELATED DEFECTS IN SiO2-BASED MATERIALS: COUPLING THEORY AND EXPERIMENTS
Blaž Winkler, 2019, doktorska disertacija

Opis: This work is primarily focused on application of standard first-principle computational approaches to model oxygen excess related point defects in amorphous silica. Atomic models with their respective electronic and optical properties are explored together with some conversion mechanisms between defect models. The first chapter overviews extensive literature about the already known properties of oxygen related defects. Second chapter briefly introduces main methods that have been used in this research, in particular Density Functional Theory (DFT) as energy and force engine with short description of minimal energy path (MEP) algorithm used for modeling chemical/migration reactions, GW approximation for charged electronic excitations (band structure) and Bethe-Salpeter Equation (BSE) for neutral excitations (optical absorption and excitonic structure including electron hole interaction). The third chapter is devoted to the presentation of results. Thanks to the calculation of optical properties of peroxy bridge (POL), a correlation has been found between structural disorder, specifically dihedral angle dispersion, and low coupling with light, which has been identified as main reason why no clear absorption bands have been assigned to the POL. Structure and stability of some other defects, like interstitial ozone molecule (ozonyl) and dioxasilirane (silicon analogy of dioxirane), have been studied. These defects are usually not considered as most important species, however their calculated formation energies are lower compared to some known defects, which indicates they might be present in silica. From a detailed study on possible reaction mechanisms, it has been found that ozonyl might be one of the most important intermediate steps for oxygen exchange reactions. Results also show that dioxasilirane can be spontaneously created during the interaction of oxygen with lone pair defects. By exploring different reactions between oxygen and pre-existing oxygen deficiency centers (ODCs), calculations predict two kinds of passivation behaviors: single-barrier reversible mechanisms with the formation of dioxasilirane-like groups, for which the network keeps the memory of the precursory lone pair defects, and single or multiple-barrier mechanisms, for which the network loses its memory, either because of the high reverse barrier or because of a reconstruction. Final part of this research has been devoted to experimental characterization of the response and tolerance of optical fibers loaded with oxygen under irradiation. These include experiments on commercial fiber along with canonical samples (Optical fibers developed with the intention of studying correlations between different fabrication parameters, dopant/impurity concentration and doping concentrations). Studied fibers also include rare-earth doped fibers.
Ključne besede: Silica, DFT, GW-approximation, Bethe-Salpeter equation, NEB, defect, oxygen, oxygen excess centers, oxygen deficiency centers, optical absorption, optical fibers, radiation induced attenuation.
Objavljeno v RUNG: 07.05.2019; Ogledov: 5347; Prenosov: 209
.pdf Celotno besedilo (13,18 MB)

5.
PHOTO-EXCITATION ENERGY INFLUENCE ON THE PHOTOCONDUCTIVITY OF ORGANIC SEMICONDUCTORS
Nadiia Pastukhova, 2018, doktorska disertacija

Opis: In this work, we experimentally studied the influence of photoexcitation energy influence on the charge transport in organic semiconductors. Organic semiconductors were small molecules like corannulene, perylene and pentacene derivatives, polymers such as polythiophene and benzothiophene derivatives, and graphene, along with combinations of these materials in heterojunctions or composites. The first part of this study is focused on the photoexcitation energy influence on the transient photoconductivity of non-crystalline curved π-conjugated corannulene layers. The enhanced photoconductivity, in the energy range where optical absorption is absent, is deduced from theoretical predictions of corannulene gas-phase excited state spectra. Theoretical analysis reveals a consistent contribution involving transitions to Super Atomic Molecular Orbitals (SAMOs), a unique set of diffuse orbitals typical of curved π-conjugated molecules. More, the photoconductivity of the curved corannulene was compared to the π-conjugated planar N,N′-1H,1H- perfluorobutyldicyanoperylene-carboxydi-imide (PDIF-CN2), where the photoexcitation energy dependence of photocurrent closely follows the optical absorption spectrum. We next characterized charge transport in poly(3-hexylthiophene) (P3HT) layers deposited from solution. Our results indicate that time-of-flight (TOF) mobility depends on the photoexcitation energy. It is 0.4× 10 −3 cm 2 /Vs at 2.3 eV (530 nm) and doubles at 4.8 eV (260 nm). TOF mobility was compared to field-effect (FET) mobility of P3HT field-effect transistors (OFETs). The FET mobility was similar to the 2.3 eV excitation TOF mobility. In order to improve charge mobility, graphene nanoparticles were blended within a P3HT solution before the deposition. We found that the mobility significantly improves upon the addition of graphene nanoparticles of a weight ratio as low as 0.2 %. FET mobility increases with graphene concentration up to a value of 2.3× 10 −2 cm 2 /Vs at 3.2 %. The results demonstrate that phase segregation starts to influence charge transport at graphene concentration of 0.8 % and above. Hence, the graphene cannot form a bridged conduction channel between electrodes, which would cancel the semiconducting effect of the polymer composite. An alternative approach to enhance mobility is to optimize the molecular ordering of organic semiconductors. For that purpose, we studied an innovative nanomesh device. Free-standing nanomesh devices were used to form nanojunctions of N,N′- iiDioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) nanowires and crystalline bis(triisopropylsilylethinyl)pentacene (TIPS-PEN). We characterized the photocurrent response time of this novel nanomesh scaffold device. The photoresponse time depends on the photon energy. It is between 4.5 − 5.6 ns at 500 nm excitation wavelength and between 6.7 − 7.7 ns at 700 nm excitation wavelength. In addition, we found that thermal annealing reduces charge carrier trapping in crystalline nanowires. This confirms that the structural defects are crucial to obtaining high photon-to-charge conversion efficiency and subsequent transport from pn junction in heterostructured materials. Structural defects also influence the power conversion efficiency of organic heterostructured photovoltaics (OPVs). Anticipating that polymers with different backbone lengths produce different level of structural defects, we examined charge transport dependence on the molecular weight of poly[4,8-bis(5-(2- ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2- ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl] (PTB7-Th) from 50 kDa to 300 kDa. We found p-type hopping transport in PTB7-Th, characterized by 0.1 – 3× 10 −2 cm 2 /Vs mobility, which increases with temperature and electric field. The polymer molecular weight exhibits a non-trivial influence on charge transport. FET mobility in the saturation regime increases with molecular weight. A similar trend is observed in TOF mobility and FET mobility in the linear regime, except for the 100kDa polymer, which manifests in the highest mobility due to reduced charge trapping. The lowest trapping at the dielectric interface of OFET is observed at 200 kDa. In addition, the 200 kDa polymer exhibits the lowest activation energy of the charge transport. Although the 100 kDa polymer indicates the highest mobility, OPVs using the 200 kDa polymer exhibit the best performance in terms of power conversion efficiency.
Ključne besede: organic semiconductors, optical absorption spectroscopy, time-of-flight photoconductivity, transient photocurrent spectroscopy, organic thin film transistors, atomic force microscopy, superatomic molecular orbitals, pn heterojunction, organic nanowires, graphene, composites, charge mobility, charge trapping, temperature dependence, photodetector, photovoltaic, solar cell, organic electronics
Objavljeno v RUNG: 08.10.2018; Ogledov: 6495; Prenosov: 170
.pdf Celotno besedilo (4,56 MB)

Iskanje izvedeno v 0.02 sek.
Na vrh