Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 95
Na začetekNa prejšnjo stran12345678910Na naslednjo stranNa konec
1.
High charge carrier mobility in thin films of quasi-two-dimensional polyacetylenes with sulphuric inter-chain linkers
Nadiia Pastukhova, Gvido Bratina, Egon Pavlica, 2023, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: Quasi-two-dimensional conjugated polymers (q2DCP) have been described and recognised as crystalline, one- or two-layer polymer nanosheets prepared by arranging linear conjugated polymer chains in a 2D plane via non-covalent interchain interactions.[1,2] The extension of polymer dimensionality to two dimensions improves the alignment of individual polymer layers and overcomes the limitations associated with charge carrier hopping between polymer chains in one-dimensional and crosslinked polymers [3] Compared to other two-dimensional materials such as graphene or transition metal dichalcogenides, q2DCPs offer a high degree of flexibility in chemical design and are compatible with liquid-based processing methods. Various q2DCPs have been synthesized by surface active monolayer-assisted interfacial synthesis (SMAIS) [5] The photoreaction of these materials is of particular interest due to their tunable properties such as band gap and associated wavelength-dependent photoexcitation, which enables a wide range of applications in optoelectronic devices. Using time-of-flight photoconductivity measurements (TOF-PC) [4], we investigate the charge transport properties of 2D polyacetylene prepared by the SMAIS method. A typical TOFP measurement of q2D polyacetylene is shown in Figure 1, using a focused nanosecond pulse laser at 325 nm and an electrode spacing of 250 µm. From the polarity of the bias voltage and the duration of the photocurrent, we can determine the polarity, velocity, and mobility of the photo-excited carriers as a function of the applied bias voltage and excitation wavelength. and observed electron mobility of 250 cm2/Vs, which is in the range of the most advanced organic single-crystal small-molecule semiconductors and almost an order of magnitude higher than linear polymeric semiconductors. We investigated the optical absorption and transmission on a lateral scale using scanning near-field optical microscopy (SNOM).
Ključne besede: 2D polymers, organic semiconductors, q2DPA, SNOM, time-of-flight photoconductivity
Objavljeno v RUNG: 25.03.2024; Ogledov: 76; Prenosov: 1
URL Povezava na datoteko
Gradivo ima več datotek! Več...

2.
3.
Organic and flexible : lecture at Ženske v znanosti in za znanost, Ljubljana, 12. 2. 2024
Nadiia Pastukhova, 2024, prispevek na konferenci brez natisa

Opis: The development of organic semiconductors (OS) opens a new perspective and possibilities for novel device architectures including flexible and wearable electronics. One of the key parameters is the charge carriers' mobility. In OSs, it is affected by many factors, including molecular stacking, chemical impurities, temperature, pressure, electric field, and charge carrier density. These factors can affect the structural or energetic disorder. To overcome limitations, new polymers that extend the π-conjugation to two dimensions were developed. The two-dimensional network structure provides a high degree of structural stability and tunability of properties, while the organic molecules can be engineered to exhibit specific chemical and physical properties such as large surface area, pore size, and electronic properties. I will present our recent research, where quasi-2D polyacetylene (q2DPA) demonstrates high electron mobility along the direction of the layer, measured by the lateral time-of-flight photoconductivity (TOF) method.
Ključne besede: 2D polymers, time-of-flight photoconductivity, TOF, organic semiconductors
Objavljeno v RUNG: 22.03.2024; Ogledov: 135; Prenosov: 2
URL Povezava na datoteko
Gradivo ima več datotek! Več...

4.
Fluorescent covalent organic frameworks : promising bioimaging materials
Chimatahalli Santhakumar Karthik, Tina Škorjanc, Dinesh Shetty, 2024, izvirni znanstveni članek

Opis: Fluorescent covalent organic frameworks (COFs) have emerged as promising candidates for imaging living cells due to their unique properties and adjustable fluorescence. In this mini-review, we provide an overview of recent advancements in fluorescent COFs for bioimaging applications. We discuss the strategies used to design COFs with desirable properties such as high photostability, excellent biocompatibility, and pH sensitivity. Additionally, we explore the various ways in which fluorescent COFs are utilized in bioimaging, including cellular imaging, targeting specific organelles, and tracking biomolecules. We delve into their applications in sensing intracellular pH, reactive oxygen species (ROS), and specific biomarkers. Furthermore, we examine how functionalization techniques enhance the targeting and imaging capabilities of fluorescent COFs. Finally, we discuss the challenges and prospects in the field of fluorescent COFs for bioimaging in living cells, urging further research in this exciting area.
Ključne besede: covalent organic frameworks, fluorescent materials, imaging, bioimaging, biosensors
Objavljeno v RUNG: 05.03.2024; Ogledov: 196; Prenosov: 3
.pdf Celotno besedilo (5,40 MB)
Gradivo ima več datotek! Več...

5.
6.
An in situ proton filter covalent organic framework catalyst for highly efficient aqueous electrochemical ammonia production
Kayaramkodath C. Ranjeesh, Sukhjot Kaur, Abdul K. Mohammed, Safa Gaber, Divyani Gupta, Khaled Badawy, Mohamed Aslam, Nirpendra Singh, Tina Škorjanc, Matjaž Finšgar, 2023, izvirni znanstveni članek

Opis: The electrocatalytic nitrogen reduction reaction (NRR) driven by renewable electricity provides a green synthesis route for ammonia (NH3) production under ambient conditions but suffers from a low conversion yield and poor Faradaic efficiency (F.E.) because of strong competition from hydrogen evolution reaction (HER) and the poor solubility of N2 in aqueous systems. Herein, an in situ proton filter covalent organic framework catalyst (Ru-Tta-Dfp) is reported with inherent Ruthenium (Ru) sites where the framework controls reactant diffusion by suppressing proton supply and enhancing N2 flux, causing highly selective and efficient catalysis. The smart catalyst design results in a remarkable ammonia production yield rate of 2.03 mg h−1 mgcat−1 with an excellent F.E. of ≈52.9%. The findings are further endorsed with the help of molecular dynamics simulations and control COF systems without in situ proton filter feasibility. The results point to a paradigm shift in engineering high-performance NRR electrocatalysts for more feasible green NH3 production.
Ključne besede: covalent organic frameworks, ammonia, electrochemical synthesis, electrochemistry, nitrogen reduction reaction, ruthenium
Objavljeno v RUNG: 11.12.2023; Ogledov: 454; Prenosov: 5
.pdf Celotno besedilo (2,77 MB)
Gradivo ima več datotek! Več...

7.
Sustained delivery of Cu(II)-based DNA intercalators by nanometer-sized cyclodextrin-based porous polymers
Tina Škorjanc, Julian Heinrich, Damjan Makuc, Nora Kulak, Matjaž Valant, 2023, izvirni znanstveni članek

Opis: DNA intercalators are small molecules that insert between adjacent DNA base pairs and thus disturb DNA replication and transcription, which can lead to cell death. Certain metal complexes are excellent DNA intercalators, and have shown promise in chemotherapy. Here, a cyclodextrin porous polymer was prepared, characterized, exfoliated to form nanometer-sized particles, and used as a delivery vehicle for metal-free and Cu(II)-metalated anthraquinone-based DNA intercalators with a goal to minimize side effects of the highly toxic DNA intercalators. NMR experiments, including DOSY NMR, have shown the interaction between the cyclodextrin building block and the studied DNA intercalators. Porous nature of the delivery vehicle provided ample surface area for interaction with the drug candidates, resulting in encapsulation rates of up to 56%. Sustained cargo release from the polymer was achieved over eight days, and time-dependent cytotoxicity was observed. Furthermore, optical microscopy images indicated delivery vehicle internalization as well as disturbed cellular morphology within 24 hours of incubation. We anticipate that this study will stimulate further interest in the development of polymeric delivery systems for metal complexes.
Ključne besede: porous organic polymers, cyclodextrin, DNA intercalators, Cu(II) complexes, metal complexes
Objavljeno v RUNG: 10.11.2023; Ogledov: 537; Prenosov: 4
.pdf Celotno besedilo (5,10 MB)
Gradivo ima več datotek! Več...

8.
Crystallizing covalent organic frameworks from metal organic framework through chemical induced-phase engineering
Abdul Khayum Mohammed, Safa Gaber, Jesus Raya, Tina Škorjanc, Nada Elmerhi, Sasi Stephen, Pilar Pena-Sánchez, Felipe Gándara, Steven Hinder, Mark A. Baker, Kyriaki Polychronopoulou, Dinesh Shetty, 2023, izvirni znanstveni članek

Opis: The ordered porous frameworks like MOFs and COFs are generally constructed using the monomers through distinctive metal-coordinated and covalent linkages. Meanwhile, the inter-structural transition between each class of these porous materials is an under-explored research area. However, such altered frameworks are expected to have exciting features compared to their pristine versions. Herein, we have demonstrated a chemical-induction phase-engineering strategy to transform a two dimensional conjugated Cu-based SA-MOF (Cu-Tp) into 2D-COFs (Cu-TpCOFs). The structural phase transition offered in-situ pore size engineering from 1.1 nm to 1.5–2.0 nm. Moreover, the Cu-TpCOFs showed uniform and low percentage-doped (~ 1–1.5%) metal distribution and improved crystallinity, porosity, and stability compared to the parent Cu-Tp MOF. The construction of a framework from another framework with new linkages opens interesting opportunities for phase-engineering.
Ključne besede: metal organic framework, covalent organic framework, phase engineering, chemical transformation, porous materials
Objavljeno v RUNG: 10.11.2023; Ogledov: 597; Prenosov: 5
.pdf Celotno besedilo (3,64 MB)
Gradivo ima več datotek! Več...

9.
10.
Iskanje izvedeno v 0.06 sek.
Na vrh