Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 77
Na začetekNa prejšnjo stran12345678Na naslednjo stranNa konec
1.
2.
The peppermint breath test: a benchmarking protocol for breath sampling and analysis using GC-MS
Laura Di Francesco, Denise Biagini, Tommaso Lomonaco, Francesca G. Bellagambi, Sven Schuchardt, Olaf Holz, Katie Hamshere, Iain R White, Maxim Wilkinson, Stephen J. Fowler, 2020, izvirni znanstveni članek

Opis: Exhaled breath contains hundreds of volatile organic compounds (VOCs) which offers the potential for diagnosing and monitoring a wide range of diseases. As the breath research field has grown, sampling and analytical practices have become highly varied between groups. Standardisation would allow meta-analyses of data from multiple studies and greater confidence in published results. The Peppermint Consortium has been formed to address this task of standardisation. In the current study we aimed to generate initial benchmark values for thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) analysis of breath samples containing peppermint-derived VOCs. Headspace analysis of peppermint oil capsules was performed to determine compounds of interest. Ten healthy participants were recruited by three groups. Each participant provided a baseline breath sample prior to taking a peppermint capsule, with further samples collected at 60, 90, 165, 285 and 360 min following ingestion. Sampling and analytical protocols were different for each institution, in line with their usual practice. Samples were analysed by TD-GC-MS and benchmarking values determined for the time taken for detected peppermint VOCs to return to baseline values. Sixteen compounds were identified in the capsule headspace. Additionally, 2,3-dehydro-1,8-cineole was uniquely found in the breath samples, with a washout profile that suggested it was a product of peppermint metabolism. Five compounds (α-pinene, β-pinene, eucalyptol, menthol and menthone) were quantified by all three groups. Differences in recovery were observed between the groups, particularly for menthone and menthol. The average time taken for VOCs to return to baseline was selected as the benchmark and were 441, 648, 1736, 643 and 375 min for α-pinene, β-pinene, eucalyptol, menthone and menthol respectively. An initial set of easy-to-measure benchmarking values for assessing the performance of TD-GC-MS systems for the analysis of VOCs in breath is presented. These values will be updated when more groups provide additional data.
Najdeno v: ključnih besedah
Ključne besede: Volatile organic compounds, breath, diagnostics, standardisation
Objavljeno: 11.12.2020; Ogledov: 1935; Prenosov: 0
.pdf Polno besedilo (1,10 MB)

3.
Detection and quantification of exhaled volatile organic compounds in mechanically ventilated patients–comparison of two sampling methods
Iain R. White, Pouline M. van Oort, Waqar Ahmed, Craig Johnson, Jonathan Bannard-Smith, Timothy Felton, Lieuwe D. Bos, Royston Goodacre, Paul Dark, Stephen J. Fowler, 2020, izvirni znanstveni članek

Opis: Exhaled breath analysis is a promising new diagnostic tool, but currently no standardised method for sampling is available in mechanically ventilated patients. We compared two breath sampling methods, first using an artificial ventilator circuit, then in “real life” in mechanically ventilated patients on the intensive care unit. In the laboratory circuit, a 24-component synthetic-breath volatile organic compound (VOC) mixture was injected into the system as air was sampled: (A) through a port on the exhalation limb of the circuit and (B) through a closed endo-bronchial suction catheter. Sorbent tubes were used to collect samples for analysis by thermal desorption-gas chromatography-mass spectrometry. Realistic mechanical ventilation rates and breath pressure–volume loops were established and method detection limits (MDLs) were calculated for all VOCs. Higher yields of VOCs were retrieved using the closed suction catheter; however, for several VOCs MDLs were compromised due to the background signal associated with plastic and rubber components in the catheters. Different brands of suction catheter were compared. Exhaled VOC data from 40 patient samples collected at two sites were then used to calculate the proportion of data analysed above the MDL. The relative performance of the two methods differed depending on the VOC under study and both methods showed sensitivity towards different exhaled VOCs. Furthermore, method performance differed depending on recruitment site, as the centres were equipped with different brands of respiratory equipment, an important consideration for the design of multicentre studies investigating exhaled VOCs in mechanically ventilated patients.
Najdeno v: ključnih besedah
Ključne besede: Volatile organic compounds, infection, breath, ventilator associated pneumonia
Objavljeno: 10.12.2020; Ogledov: 1667; Prenosov: 0
.pdf Polno besedilo (1,61 MB)

4.
5.
Electrical conductivity in 3,4,9,10-perylenetetracarboxylic dianhidride (PTCDA)
Gvido Bratina, Robert Hudej, Marko Zavrtanik, John Nimly Brownell, 2001, izvirni znanstveni članek

Opis: The transient photoresponse in 3,4,9,10-perylenetetracarboxylic dianhydride was examined in metal/organic semiconductor/metal heterostructures. Electron-hole pairs are generated within the structure for fields higher than 5 X 10[sup]4 V/cm as a consequence of the exciton dissociation. The mobility of the electrons perpendicular to the molecular layers increases with the applied electric field and saturates for fields higher than 5 X 10[sup]4 V/cm.
Najdeno v: ključnih besedah
Ključne besede: organic semiconductor, thin films, transient photoconductivity
Objavljeno: 10.07.2015; Ogledov: 5631; Prenosov: 36
URL Polno besedilo (0,00 KB)

6.
THE MORPHOLOGY DEPENDENCE ON GROWTH PARAMETERS IN NANOSTRUCTURED SEMICONDUCTORS
Miha Gunde, 2014, diplomsko delo

Opis: Poly(3-hexylthiophene) (P3HT) is an organic semiconductor material that is widely studied in the photovoltaics and transistor fields of research. The polymer exhibits a relatively high charge carrier mobility when the molecules are ordered in a crystalline way. In this case the material exhibits a fibril-like morphology, which is usually studied by atomic force microscopy (AFM). Previous studies show that blending P3HT with graphene can further improve the charge carrier transport properties of the film. In this experiment, the scanning electron microscope (SEM) has been chosen, due to its practical aspects such as speed of operation and ease of use. Three sets of samples have been analyzed, containing films made of P3HT+graphene blends at different concentrations. The aims of the experiment are: i) to find good conditions for the observation of the morphology features of the film ii) to perform a morphological analysis of the surface of three sets of samples containing both pure P3HT, and P3HT+graphene blend, and possibly to highlight correlation between morpholgy and the charge transport properties. Surface analysis is done by detecting the secondary electron (SE) emission, which is sensitive to topographical features of the surface. Good observation conditions were established by coating the specimen with a thin layer of conductive coating, using a high energy beam (30 keV), and tilting the sample to an angle (30 ◦ ). In two out of three of the analyzed pure P3HT films, the presence of fibrilles indicated a possibly good charge mobility, which has been confirmed by electrical measurements using time-of-flight photoconductivity method (TOF). The presence of graphene has only slightly modified morphology of the film. Features of graphene flakes, which lie flat in the film, have been observed such as flake edges and folds. The flakes are homogeneously dispersed in the film without forming any connected network. TOF measurements have shown an increase in mobility of the charge carriers in the P3HT+graphene film.
Najdeno v: ključnih besedah
Ključne besede: scanning electron microscope, organic semiconductor thin film, P3HT, graphene, morphology
Objavljeno: 01.12.2016; Ogledov: 5645; Prenosov: 163
.pdf Polno besedilo (30,93 MB)

7.
Structure-property relationships of curved aromatic materials from first principles
Layla Martin-Samos, Laura Zoppi, Kim K. Baldridge, 2014, izvirni znanstveni članek

Najdeno v: ključnih besedah
Ključne besede: organic molecules, organic crystals, many-body perturbation theory, optical properties
Objavljeno: 16.06.2016; Ogledov: 3420; Prenosov: 133
URL Polno besedilo (0,00 KB)

8.
Vacancy formation on C60/Pt (111)
Sandra Gardonio, Anna L Pinardi, 2014, izvirni znanstveni članek

Najdeno v: ključnih besedah
Ključne besede: fullerenes, spectroscopy, metal organic interfaces
Objavljeno: 09.05.2017; Ogledov: 3359; Prenosov: 24
URL Polno besedilo (0,00 KB)

9.
Flexible non-volatile optical memory thin-filmtransistor device with over 256 distinct levelsbased on an organic bicomponent blend
Gvido Bratina, Egon Pavlica, 2016, izvirni znanstveni članek

Opis: Flexible non-volatile optical memory thin-filmtransistor device with over 256 distinct levelsbased on an organic bicomponent blendTim Leydecker1, Martin Herder2, Egon Pavlica3,GvidoBratina3,StefanHecht2*, Emanuele Orgiu1*and Paolo Samorì1*Organic nanomaterials are attracting a great deal of interest for use in flexible electronic applications such as logiccircuits, displays and solar cells. These technologies have already demonstrated good performances, but flexible organicmemories are yet to deliver on all their promise in terms of volatility, operational voltage, write/erase speed, as well asthe number of distinct attainable levels. Here, we report a multilevel non-volatile flexible optical memory thin-filmtransistor based on a blend of a reference polymer semiconductor, namely poly(3-hexylthiophene), and a photochromicdiarylethene, switched with ultraviolet and green light irradiation. A three-terminal device featuring over 256 (8 bitstorage) distinct current levels was fabricated, the memory states of which could be switched with 3 ns laser pulses.We also report robustness over 70 write–erase cycles and non-volatility exceeding 500 days. The device was implementedon a flexible polyethylene terephthalate substrate, validating the concept for integration into wearable electronics andsmart nanodevices.
Najdeno v: ključnih besedah
Ključne besede: organic semiconductors time of flight
Objavljeno: 22.06.2016; Ogledov: 4804; Prenosov: 0
.pdf Polno besedilo (2,78 MB)

10.
The role of local potential minima on charge transport in thin organic semiconductor layers
Egon Pavlica, Raveendra Babu Penumala, Bratina Gvido, 2016, izvirni znanstveni članek

Opis: We have performed a systematic study of dependence of time-resolved photocurrent on the point of charge excitation within the organic semiconductor channel formed by two coplanar metal electrodes. The results confirm that spatial variation of electric field between the electrodes crucially determines transport of photogenerated charge carriers through the organic layer. Time-of-flight measurements of photocurrent demonstrate that the transit time of photogenerated charge carrier packets drifting between the two electrodes decreases with increasing travelling distance. Such counterintuitive result cannot be reconciled with the spatial distribution of electric field between coplanar electrodes, alone. It is also in contrast to expected role of space-charge screening of external electric field. Supported by Monte Carlo simulations of hopping transport in disordered organic semiconductor layer, we submit that the space-charge screens the external electric field and captures slower charge carriers from the photogenerated charge carrier packet. The remaining faster carriers, exhibit velocity distribution with significantly higher mean value and shorter transit time.
Najdeno v: ključnih besedah
Ključne besede: Charge transport, Organic semiconductors, Time of flight, Mobility, Traps
Objavljeno: 23.12.2016; Ogledov: 4594; Prenosov: 0
.pdf Polno besedilo (950,46 KB)

Iskanje izvedeno v 0 sek.
Na vrh