Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


11 - 14 / 14
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
11.
Negative field‐dependent charge mobility in crystalline organic semiconductors with delocalized transport
Fei Tong, Andrey Kadashchuk, Egon Pavlica, Gvido Bratina, 2018, izvirni znanstveni članek

Opis: Charge-carrier mobility has been investigated by time-of-flight (TOF) transient photocurrent in a lateral transport con- figuration in highly crystalline thin films of 2,7-dioctyl[1]benzothieno [3,2-b][1] benzothiophene (C8-BTBT) grown by a zone-casting alignment technique. High TOF mobility has been revealed that it is consistent with the delocalized nature of the charge transport in this material, yet it featured a positive temperature dependence at T ≥ 295 K. Moreover, the mobility was surprisingly found to decrease with electric field in the high-temperature region. These observations are not compat- ible with the conventional band-transport mechanism. We have elaborated an analytic model based on effective-medium approximation to rationalize the puzzling findings. The model considers the delocalized charge transport within the energy landscape formed by long-range transport band-edge variations in imperfect organic crystalline materials and accounts for the field-dependent effective dimensionality of charge transport percolative paths. The results of the model calculations are found to be in good agreement with experimental data.
Ključne besede: time of flight, organic semiconductors, single crystals
Objavljeno v RUNG: 07.05.2018; Ogledov: 5307; Prenosov: 0
Gradivo ima več datotek! Več...

12.
Interface-controlled growth of organic semiconductors on graphene
Jinta Mathews, Saim Emin, Egon Pavlica, Matjaž Valant, Gvido Bratina, 2017, izvirni znanstveni članek

Opis: We have studied submonolayer coverages of N,N-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN2) on mechanically exfoliated graphene transferred onto SiO2 substrates. Our atomic force microscopy (AFM) data show that PDIF-CN2 forms irregularly-shaped 1.4 nm-high islands. From the selected area diffraction performed with transmission electron microscope (TEM) we conclude that this height corresponds to π−π stacks of molecules, which are inclined for 43° relative to the graphene surface. AFM also showed complete absence of PDIF-CN2 on single-layer graphene (SLG). Electric force microscopy revealed a marked difference in surface charge density between a single-layer graphene and bilayer graphene, with a higher surface charge on SLG than on the bilayer graphene. We associate this behavior with p− type doping of graphene due to the electrostatic dipole induced by the molecular water layer present at the graphene/SiO2 interface. The crucial role of the graphene/SiO2 interface in determining growth of PDIF-CN2 was further confirmed by TEM examination of PDIF-CN2 deposited onto unsupported SLG.
Ključne besede: afm, organic semiconductors, graphene
Objavljeno v RUNG: 18.05.2017; Ogledov: 4827; Prenosov: 0
Gradivo ima več datotek! Več...

13.
The role of local potential minima on charge transport in thin organic semiconductor layers
Egon Pavlica, Raveendra Babu Penumala, Gvido Bratina, 2016, izvirni znanstveni članek

Opis: We have performed a systematic study of dependence of time-resolved photocurrent on the point of charge excitation within the organic semiconductor channel formed by two coplanar metal electrodes. The results confirm that spatial variation of electric field between the electrodes crucially determines transport of photogenerated charge carriers through the organic layer. Time-of-flight measurements of photocurrent demonstrate that the transit time of photogenerated charge carrier packets drifting between the two electrodes decreases with increasing travelling distance. Such counterintuitive result cannot be reconciled with the spatial distribution of electric field between coplanar electrodes, alone. It is also in contrast to expected role of space-charge screening of external electric field. Supported by Monte Carlo simulations of hopping transport in disordered organic semiconductor layer, we submit that the space-charge screens the external electric field and captures slower charge carriers from the photogenerated charge carrier packet. The remaining faster carriers, exhibit velocity distribution with significantly higher mean value and shorter transit time.
Ključne besede: Charge transport, Organic semiconductors, Time of flight, Mobility, Traps
Objavljeno v RUNG: 23.12.2016; Ogledov: 5376; Prenosov: 0
Gradivo ima več datotek! Več...

14.
Flexible non-volatile optical memory thin-filmtransistor device with over 256 distinct levelsbased on an organic bicomponent blend
Gvido Bratina, Egon Pavlica, 2016, izvirni znanstveni članek

Opis: Flexible non-volatile optical memory thin-filmtransistor device with over 256 distinct levelsbased on an organic bicomponent blendTim Leydecker1, Martin Herder2, Egon Pavlica3,GvidoBratina3,StefanHecht2*, Emanuele Orgiu1*and Paolo Samorì1*Organic nanomaterials are attracting a great deal of interest for use in flexible electronic applications such as logiccircuits, displays and solar cells. These technologies have already demonstrated good performances, but flexible organicmemories are yet to deliver on all their promise in terms of volatility, operational voltage, write/erase speed, as well asthe number of distinct attainable levels. Here, we report a multilevel non-volatile flexible optical memory thin-filmtransistor based on a blend of a reference polymer semiconductor, namely poly(3-hexylthiophene), and a photochromicdiarylethene, switched with ultraviolet and green light irradiation. A three-terminal device featuring over 256 (8 bitstorage) distinct current levels was fabricated, the memory states of which could be switched with 3 ns laser pulses.We also report robustness over 70 write–erase cycles and non-volatility exceeding 500 days. The device was implementedon a flexible polyethylene terephthalate substrate, validating the concept for integration into wearable electronics andsmart nanodevices.
Ključne besede: organic semiconductors time of flight
Objavljeno v RUNG: 22.06.2016; Ogledov: 5570; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.03 sek.
Na vrh