Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Early stress detection in forest trees using a nanobody-functionalized electrochemical biosensor for ascorbate peroxidase
Claudia D'Ercole, Rossella Svigelj, Tanja Mrak, Ario De Marco, 2025, izvirni znanstveni članek

Opis: Forest environments are exposed to multiple stressful factors of both abiotic and biotic nature such as heavy metal contamination, drought, or pest infestations which may lead to their massive decline. We designed a comprehensive approach for isolating, producing and functionalizing reagents suitable for the affordable detection of forest plant stress biomarkers with the aim to provide quantitative data to assess plant stress fluctuation and, possibly, to design mitigation strategies. We first optimized a panning protocol to recover nanobodies targeting shared sequences that could cross-react with both Pisum sativum and Populus nigra ascorbate peroxidase (APX). After their production as recombinant constructs and their extensive biophysical and biochemical characterization, such reagents were exploited as the immunocapture element of an electrochemical biosensor conceived as a potential point-of-care device. Such biosensor could detect both pea and poplar APX in leaf extracts and could be used to clearly discriminate between control and heavy metal-stressed poplar plants based on their APX activity, even before the appearance of any phenotypic symptom. The combination of fast and inexpensive reagent production with the development of portable diagnostics opens the opportunity for large-scale, on-site surveys of forest trees.
Ključne besede: plant stress, scavengers, diagnostics, nanobodies, biosensors
Objavljeno v RUNG: 11.04.2025; Ogledov: 328; Prenosov: 2
.pdf Celotno besedilo (4,65 MB)
Gradivo ima več datotek! Več...

2.
3.
Instruct-ERIC network : biophysical characterization of antigen-nanobody complexes
Claudia D'Ercole, 2024, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: Forest environments are exposed to multiple stressful factors of both abiotic and biotic nature which may lead to their massive decline [1]. Understanding the molecular mechanisms of specific stress conditions and monitoring the fluctuations of reliable forest plant biomarkers with affordable methods would be instrumental for assessing stress levels over the time. Ascorbate peroxidase (APX) represents a suitable plant biomarker. APX is a hydrogen peroxide-scavenging enzyme the critical role of which has been described in several plants, both herbaceous and woody. Its activity generally increases under oxidative stress during which its peroxide detoxifying function is part of the wider ascorbate-glutathione cycle [2]. The development of reagents to detect such fluctuations would help the evaluation of plant physiological conditions. In this study, nanobodies (Nbs) targeting APX have been identified. Nbs correspond to the variable domain of heavy chain-only antibodies derived from camelids. They are small (15 kDa), stable, and can be easily produced in bacteria fused to different protein tags according to the downstream applications [3]. After their isolation by biopanning against soluble APX, they have been produced and underwent a biophysical characterization in combination with their antigen (APX-Nb complex) to identify the best binders in terms of stability and affinity. The protein complex characterization was supported by Instruct-ERIC and mainly performed at the BIOCEV institute of Prague. Data from Mass Photometry and Dynamic Light scattering evidenced the formation of the protein complexes, whereas the preliminary data of Hydrogen-Deuterium Exchange Mass Spectrometry, performed with the aim of identifying the residues involved in the paratope/epitope interface, were insufficient to clarify the issue and rather suggested that the interaction has low affinity. This indication was then confirmed by ELISA assay. The combination of multiple methods allowed a comprehensive sample characterization which will require further structural analyses to provide a complete picture of the APX-Nb complex. [1] G. Marie. B. C. M. B. C. Walters, “Forest decline and tree mortality in a southeastern Ohio oak-hickory forest,” Ohio Journal of Science , vol. 97, 1997. [2] O. Chew, J. Whelan, and A. H. Millar, “Molecular Definition of the Ascorbate-Glutathione Cycle in Arabidopsis Mitochondria Reveals Dual Targeting of Antioxidant Defenses in Plants,” Journal of Biological Chemistry, vol. 278, no. 47, 2003, doi: 10.1074/jbc.M307525200. [3] S. Muyldermans, “A guide to: generation and design of nanobodies,” FEBS J, vol. 288, no. 7, pp. 2084–2102, Apr. 2021, doi: 10.1111/febs.15515.
Ključne besede: nanobody, ascorbate peroxidase, plant stress, protein complex, biophysical methodologies
Objavljeno v RUNG: 31.05.2024; Ogledov: 1787; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.01 sek.
Na vrh