Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
MINOT: Modeling the intracluster medium (non-)thermal content and observable prediction tools
Rémi Adam, Hazal Gosku, A. Leingärtner-Goth, Steffano Ettori, R. Gnatyk, B. Hnatyk, Moritz Hütten, Judit Pérez Romero, Miguel Sánchez-Conde, Olga Sergijenko, izvirni znanstveni članek

Opis: In the past decade, the observations of diffuse radio synchrotron emission toward galaxy clusters revealed cosmic-ray (CR) electrons and magnetic fields on megaparsec scales. However, their origin remains poorly understood to date, and several models have been discussed in the literature. CR protons are also expected to accumulate during the formation of clusters and probably contribute to the production of these high-energy electrons. In order to understand the physics of CRs in clusters, combining of observations at various wavelengths is particularly relevant. The exploitation of such data requires using a self-consistent approach including both the thermal and the nonthermal components, so that it is capable of predicting observables associated with the multiwavelength probes at play, in particular in the radio, millimeter, X-ray, and γ-ray bands. We develop and describe such a self-consistent modeling framework, called MINOT (modeling the intracluster medium (non-)thermal content and observable prediction tools) and make this tool available to the community. MINOT models the intracluster diffuse components of a cluster (thermal and nonthermal) as spherically symmetric. It therefore focuses on CRs associated with radio halos. The spectral properties of the cluster CRs are also modeled using various possible approaches. All the thermodynamic properties of a cluster can be computed self-consistently, and the particle physics interactions at play are processed using a framework based on the Naima software. The multiwavelength observables (spectra, profiles, flux, and images) are computed based on the relevant physical process, according to the cluster location (sky and redshift), and based on the sampling defined by the user. With a standard personal computer, the computing time for most cases is far shorter than one second and it can reach about one second for the most complex models. This makes MINOT suitable for instance for Monte Carlo analyses. We describe the implementation of MINOT and how to use it. We also discuss the different assumptions and approximations that are involved and provide various examples regarding the production of output products at different wavelengths. As an illustration, we model the clusters Abell 1795, Abell 2142, and Abell 2255 and compare the MINOT predictions to literature data. While MINOT was originally build to simulate and model data in the γ-ray band, it can be used to model the cluster thermal and nonthermal physical processes for a wide variety of datasets in the radio, millimeter, X-ray, and γ-ray bands, as well as the neutrino emission.
Ključne besede: galaxy clusters, intracluster medium, cosmic rays, radiation mechanisms, numerical methods
Objavljeno v RUNG: 27.01.2023; Ogledov: 872; Prenosov: 0
Gradivo ima več datotek! Več...

2.
Scrutinizing FR 0 radio galaxies as ultra-high-energy cosmic ray source candidates
Lukas Merten, Margot Boughelilba, Anita Reimer, Paolo Da Vela, Serguei Vorobiov, Fabrizio Tavecchio, Giacomo Bonnoli, Jon Paul Lundquist, Chiara Righi, 2021, izvirni znanstveni članek

Opis: Fanaroff-Riley (FR) 0 radio galaxies compose a new class of radio galaxies, which are usually weaker but much more numerous than the well-established class of FR 1 and FR 2 galaxies. The latter classes have been proposed as sources of the ultra-high-energy cosmic rays (UHECRs) with energies reaching up to eV. Based on this conjecture, the possibility of UHECR acceleration and survival in an FR 0 source environment is examined in this work. In doing so, an average spectral energy distribution (SED) based on data from the FR 0 catalog (FR0CAT) is compiled. The resulting photon fields are used as targets for UHECRs, which suffer from electromagnetic pair production, photo-disintegration, photo-meson production losses, and synchrotron radiation. Multiple mechanisms are discussed to assess the UHECR acceleration probability, including Fermi-I order and gradual shear accelerations, and particle escape from the source region. This work shows that in a hybrid scenario, combining Fermi and shear accelerations, FR 0 galaxies can contribute to the observed UHECR flux, as long as where shear acceleration starts to dominate over escape. Even in less optimistic scenarios, FR 0s can be expected to contribute to the cosmic-ray flux between the knee and the ankle. Our results are relatively robust with respect to the realized magnetic turbulence model and the speed of the accelerating shocks.
Ključne besede: acceleration of particles, nonthermal radiation mechanisms, jets, active galaxies, cosmic rays
Objavljeno v RUNG: 05.02.2021; Ogledov: 2497; Prenosov: 0
Gradivo ima več datotek! Več...

3.
FERMI-LAT OBSERVATIONS OF HIGH-ENERGY γ-RAY EMISSION TOWARD THE GALACTIC CENTER
Gabrijela Zaharijas, B. L. Winer, 2016, izvirni znanstveni članek

Opis: The Fermi Large Area Telescope (LAT) has provided the most detailed view to date of the emission toward the Galactic center (GC) in high-energy γ-rays. This paper describes the analysis of data taken during the first 62 months of the mission in the energy range 1–100 GeV from a 15° × 15° region about the direction of the GC. Specialized interstellar emission models (IEMs) are constructed to enable the separation of the γ-ray emissions produced by cosmic ray particles interacting with the interstellar gas and radiation fields in the Milky Way into that from the inner ∼1 kpc surrounding the GC, and that from the rest of the Galaxy. A catalog of point sources for the 15° × 15° region is self-consistently constructed using these IEMs: the First Fermi-LAT Inner Galaxy Point Source Catalog (1FIG). The spatial locations, fluxes, and spectral properties of the 1FIG sources are presented, and compared with γ-ray point sources over the same region taken from existing catalogs. After subtracting the interstellar emission and point-source contributions a residual is found. If templates that peak toward the GC are used to model the positive residual the agreement with the data improves, but none of the additional templates tried account for all of its spatial structure. The spectrum of the positive residual modeled with these templates has a strong dependence on the choice of IEM.
Ključne besede: cosmic rays – Galaxy: center – gamma-rays: general – gamma-rays: ISM – radiation mechanisms: non-thermal
Objavljeno v RUNG: 02.03.2016; Ogledov: 5124; Prenosov: 289
.pdf Celotno besedilo (6,36 MB)

Iskanje izvedeno v 0.02 sek.
Na vrh