Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Catalytic hydro(deoxy)genation of furfural and modelling of its reaction kinetics : dissertation
Rok Šivec, 2024, doktorska disertacija

Opis: In recent decades, there has been a growing interest in producing biofuels and biochemicals from renewable sources. Furfural stands as one of the ligno(hemi)cellulosic biomass derived platform chemical, which can be transformed into numerous value-added products. The goal of this PhD was to systematically study hydrotreatment reactions of furfural under varying operating conditions and to gain insights into the reaction mechanism and kinetics. An extensive experimental and computational study of hydrogenation, hydrodeoxygenation, oligomerisation and etherification of furfural in a three-phase batch reactor was performed. The goals were divided into three consecutive objectives. In the first part, hydrotreatment of furfural over Pd/C catalyst under various reaction conditions, including the solvent selection (solventless conditions, tetrahydrofuran, isopropanol), atmosphere (nitrogen, hydrogen), temperature (100–200 °C), pressure (25–75 bar) and stirring speed, was studied. A reaction pathway network and a micro-kinetic model were developed, incorporating thermodynamics (hydrogen solubility), mass transfer, adsorption, desorption, and surface reactions. These phenomena and their contribution to the surface coverages, TOF’s and global reaction rates were studied. The hydrogen presence on the catalyst surface was found to influence the main reaction pathway, leading to ring, aldehyde group or full hydrogenation. In the second part, various monometallic catalysts (Pd/C, Pt/C, Re/C, Ru/C, Rh/C, Ni/C, Cu/C) were tested at 100 -200 °C with 60 bar of hydrogen and tetrahydrofuran as solvent. A generalized reaction pathway network was developed. H2 temperature-programmed reduction (H2-TPR) and CO temperature-programmed desorption (CO-TPD) were conducted, and a regression analysis of the results was subsequently performed by numerical modelling and optimisation. The obtained adsorption and desorption kinetic parameters for active metallic sites were further used in a generalized micro-kinetic model, applicable to all tested catalysts. Pd/C exhibited high activity and non-selective hydrogenation of furfural, while other catalysts showed selective aldehyde group hydrogenation followed by deoxygenation, consistent with density functional theory (DFT) calculations. Ru/C uniquely produced 2 methyltetrahydrofuran and ring-opening products at 200 °C. In silico optimization of reaction conditions for promising catalysts ((Pd/C, Pt/C, Re/C, Ni/C) aimed to maximize the yield of the target product. In the third part, the influence of support on catalytic activity was studied. Hydrotreatment of furfural over Pd/Al2O3, Pd/SiO2, Ru/Al2O3, Ru/SiO2, Ni/Al2O3, and Ni/SiO2 was performed between 150 - 200 °C, using 60 bar of hydrogen and tetrahydrofuran as solvent. The strength and rate of adsorption and desorption to/from acidic, metallic and interface site structures were determined, using H2-TPR, CO-TPD and NH3-TPD and subsequent regression analysis of the results by numerical modelling and optimisation. The resulting parameters were sequentially used in the generalized micro-kinetic model to quantify the contribution of the active metal (Ni, Pd, or Ru), support (Al2O3 or SiO2), interphase sites and their relationship on catalyst activity and selectivity. Evaluation of morphological and structural characteristics, adsorption/desorption and intrinsic reaction kinetics has indicated that the coverage of acidic sites (on alumina or silica) facilitated yielding ring hydrogenation and inhibited deoxygenation, decarbonylation and cyclic compound opening. The rates for aromatics or aldehyde functional groups were, nonetheless, affected in a different order. The used and developed methods and findings of this PhD offer useful guidelines for transforming furfural into high-value chemicals through catalytic hydrotreatment, with significant implications for future research and industrial applications.
Ključne besede: lignocellulosic biomass, furfural, catalytic hydrogenation, micro-kinetic mass transfer model, reaction kinetics, first-principle methods, furfuryl alcohol, tetrahydrofurfuryl alcoholv, dissertations
Objavljeno v RUNG: 08.11.2024; Ogledov: 265; Prenosov: 4
.pdf Celotno besedilo (9,22 MB)

2.
Chemistry of the iron-chlorine thermochemical cycle for hydrogen production utilizing industrial waste heat
Matjaž Valant, Uroš Luin, 2024, izvirni znanstveni članek

Opis: This research presents an inventive thermochemical cycle that utilizes a reaction between iron and HCl acid for hydrogen production. The reaction occurs spontaneously at room temperature, yielding hydrogen and a FeCl2 solution as a by-product. Exploring the thermal decomposition of the FeCl2 by-product revealed that, at conditions suitable for utilization of low-temperature industrial waste heat (250 °C), chlorine gas formation can be circumvented. Instead, the resulting by-product is HCl, which is readily soluble in water, facilitating direct reuse in subsequent cycles. The utilization of low-temperature industrial heat not only optimizes resource utilization and reduces operational costs but also aligns with environmentally sustainable production processes. From the kinetic studies the activation energy was calculated to be 45 kJ/mol and kinetics curves were constructed. They showed significant kinetics at room temperature and above but rapid decrease towards lower temperatures. This is important to consider during real-scale technology optimization. The theoretical overall energy efficiency of the cycle, with 100% and 70% heat recuperation, was calculated at 68.8% and 44.8%, respectively. In practical implementation, considering the efficiency of DRI iron reduction technology and free waste heat utilization, the cycle achieved a 41.7% efficiency. Beyond its energy storage capabilities, the Iron-chlorine cycle addresses safety concerns associated with large-scale hydrogen storage, eliminating self-discharge, reducing land usage, and employing cost-effective storage materials. This technology not only facilitates seasonal energy storage but also establishes solid-state energy reserves, making it suitable for balancing grid demands during winter months using excess renewable energy accumulated in the summer.
Ključne besede: chemical cycles, hydrogen production, thermal decomposition, reaction kinetics, iron, chlorine
Objavljeno v RUNG: 12.01.2024; Ogledov: 1880; Prenosov: 43
.pdf Celotno besedilo (3,80 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.01 sek.
Na vrh