1. |
2. |
3. Time series analysis of duty cycle induced randomness in thermal lens systemMohanachandran Nair Sindhu Swapna, 2020, izvirni znanstveni članek Opis: The present work employs time series analysis, a proven powerful mathematical tool, for investigating the complex molecular dynamics of the thermal lens (TL) system induced by the duty cycle (C) variation. For intensity modulation, TL spectroscopy commonly uses optical choppers. The TL formation involves complex molecular dynamics that vary with the input photothermal energy, which is implemented by varying the duty cycle of the chopper. The molecular dynamics
is studied from the fractal dimension (D), phase portrait, sample entropy (S), and Hurst exponent (H) for different duty cycles. The increasing value of C is found to increase D and S, indicating that the system is becoming complex and less deterministic, as evidenced by the phase portrait analysis. The value of H less than 0.5 conforms the evolution of the TL system to more anti-persistent nature with C. The increasing value of C increases the enthalpy of the system that appears as an increase in full width at half maximum of the refractive index profile. Thus the study establishes that the sample entropy and thermodynamic entropy are directly related. Ključne besede: Time series analysis
Fractal analysis
Photothermal lens spectroscopy
Fractal dimension
Hurst exponent
Sample entropy Objavljeno v RUNG: 05.07.2022; Ogledov: 2064; Prenosov: 0 Gradivo ima več datotek! Več... |
4. |
5. Neural net pattern recognition based auscultation of croup cough and pertussis using phase portrait featuresMohanachandran Nair Sindhu Swapna, 2021, izvirni znanstveni članek Opis: Cough signal analysis for understanding the pathological condition has become important from the outset of the exigency posed by the epidemic COVID-19. The present work suggests a surrogate approach for the classification of cough signals - croup cough (CC) and pertussis (PT) – based on spectral, fractal, and nonlinear time-series techniques. The spectral analysis of CC reveals the presence of more frequency components in the short duration cough sound compared to PT. The musical nature of CC is unveiled not only through the spectral analysis but also through the phase portrait features – sample entropy (S), maximal Lyapunov exponent (L), and Hurst exponent (Hb). The modifications in the internal morphology of the respiratory tract, giving rise to more frequency components associated with the complex airflow dynamics, get staged through the higher fractal dimension of CC. Among the two supervised classification tools, cubic KNN (CKNN) and neural net pattern recognition (NNPR), used for classifying the CC and PT signals based on nonlinear time series parameters, NNPR is found better. Thus, the study opens the possibility of identification of pulmonary pathological conditions through cough sound signal analysis. Ključne besede: Croup cough
Pertussis
Fractal dimension
Phase portrait
Sample entropy
Machine learning techniques Objavljeno v RUNG: 04.07.2022; Ogledov: 1840; Prenosov: 0 Gradivo ima več datotek! Več... |
6. Fractal and time-series analyses based rhonchi and bronchial auscultation: A machine learning approachMohanachandran Nair Sindhu Swapna, 2022, izvirni znanstveni članek Opis: Objectives: The present work reports the study of 34 rhonchi (RB) and
Bronchial Breath (BB) signals employing machine learning techniques, timefrequency, fractal, and non-linear time-series analyses. Methods: The timefrequency analyses and the complexity in the dynamics of airflow in BB
and RB are studied using both Power Spectral Density (PSD) features and
non-linear measures. For accurate prediction of these signals, PSD and nonlinear measures are fed as input attributes to various machine learning
models. Findings: The spectral analyses reveal fewer, low-intensity frequency
components along with its overtones in the intermittent and rapidly damping
RB signal. The complexity in the dynamics of airflow in BB and RB is investigated
through the fractal dimension, Hurst exponent, phase portrait, maximal
Lyapunov exponent, and sample entropy values. The greater value of entropy
for the RB signal provides an insight into the internal morphology of the airways
containing mucous and other obstructions. The Principal Component Analysis
(PCA) employs PSD features, and Linear Discriminant Analysis (LDA) along
with Pattern Recognition Neural Network (PRNN) uses non-linear measures
for predicting BB and RB. Signal classification based on phase portrait
features evaluates the multidimensional aspects of signal intensities, whereas
that based on PSD features considers mere signal intensities. The principal
components in PCA cover about 86.5% of the overall variance of the data class,
successfully distinguishing BB and RB signals. LDA and PRNN that use nonlinear time-series parameters identify and predict RB and BB signals with 100%
accuracy, sensitivity, specificity, and precision. Novelty: The study divulges the
potential of non-linear measures and PSD features in classifying these signals
enabling its application to be extended for low-cost, non-invasive COVID-19
detection and real-time health monitoring. Ključne besede: lung signal, fractal analysis, sample entropy, nonlinear timeseries, machine learning techniques Objavljeno v RUNG: 30.06.2022; Ogledov: 2142; Prenosov: 0 Gradivo ima več datotek! Več... |
7. Time series and fractal analyses of wheezing : a novel approachMohanachandran Nair Sindhu Swapna, Ammini Renjini, Vimal Raj, S. Sreejyothi, Sankaranarayana Iyer Sankararaman, 2020, izvirni znanstveni članek Opis: Since the outbreak of the pandemic Coronavirus Disease 2019, the world is in search of novel non-invasive methods for safer
and early detection of lung diseases. The pulmonary pathological symptoms refected through the lung sound opens a possibility of detection through auscultation and of employing spectral, fractal, nonlinear time series and principal component
analyses. Thirty-fve signals of vesicular and expiratory wheezing breath sound, subjected to spectral analyses shows a clear
distinction in terms of time duration, intensity, and the number of frequency components. An investigation of the dynamics
of air molecules during respiration using phase portrait, Lyapunov exponent, sample entropy, fractal dimension, and Hurst
exponent helps in understanding the degree of complexity arising due to the presence of mucus secretions and constrictions
in the respiratory airways. The feature extraction of the power spectral density data and the application of principal component analysis helps in distinguishing vesicular and expiratory wheezing and thereby, giving a ray of hope in accomplishing
an early detection of pulmonary diseases through sound signal analysis. Ključne besede: auscultation, wheeze, fractals, nonlinear time series analysis, sample entropy Objavljeno v RUNG: 30.06.2022; Ogledov: 2096; Prenosov: 0 Gradivo ima več datotek! Več... |
8. Nonlinear time series and principal component analyses: Potential diagnostic tools for COVID-19 auscultationMohanachandran Nair Sindhu Swapna, RAJ VIMAL, RENJINI A, SREEJYOTHI S, SANKARARMAN S, 2020, izvirni znanstveni članek Opis: The development of novel digital auscultation techniques has become highly significant in the context
of the outburst of the pandemic COVID 19. The present work reports the spectral, nonlinear time series,
fractal, and complexity analysis of vesicular (VB) and bronchial (BB) breath signals. The analysis is carried
out with 37 breath sound signals. The spectral analysis brings out the signatures of VB and BB through
the power spectral density plot and wavelet scalogram. The dynamics of airflow through the respiratory tract during VB and BB are investigated using the nonlinear time series and complexity analyses in
terms of the phase portrait, fractal dimension, Hurst exponent, and sample entropy. The higher degree
of chaoticity in BB relative to VB is unwrapped through the maximal Lyapunov exponent. The principal
component analysis helps in classifying VB and BB sound signals through the feature extraction from the
power spectral density data. The method proposed in the present work is simple, cost-effective, and sensitive, with a far-reaching potential of addressing and diagnosing the current issue of COVID 19 through
lung auscultation. Ključne besede: Breath sound analysis, Fractal dimension, Nonlinear time series analysis, Sample entropy, Hurst exponent, Principal component analysis Objavljeno v RUNG: 28.06.2022; Ogledov: 2416; Prenosov: 0 Gradivo ima več datotek! Več... |
9. Thermal Lensing of Multi-Walled Carbon Nanotube Solutions as Heat-Transfer NanofluidsMohanachandran Nair Sindhu Swapna, RAJ VIMAL, CABRERA HUMBERTO, SANKARARAMAN SANKARANARAYANA IYER, 2021, izvirni znanstveni članek Opis: This paper unwraps nanofluids’ particle dynamics with
multi-walled carbon nanotubes (MWCNTs) in base fluids such as
acetone, water, and ethylene glycol. Having confirmed the
morphology and structure of the MWCNTs by field emission
scanning electron microscopy, X-ray diffraction, and Raman
spectroscopic analyses, the nanofluids are prepared in three different concentrations. The nonzero absorbance at the laser wavelength, revealed through the UV−visible spectrum, makes the thermal diffusivity study of the sample by the sensitive nondestructive single beam thermal lens (TL) technique possible. The TL signal analysis by time series and fractal techniques divulges the complex particle dynamics, through phase portrait, sample entropy, fractal dimension, and Hurst exponent. The study unveils the effect of the amount of nanoparticles and the viscosity of the medium on thermal diffusivity and particle dynamics. The observed inverse relation between thermal diffusivity and viscosity is in good agreement with the
Sankar−Swapna model. The complexity of particle dynamics in MWCNT nanofluids reflected through sample entropy, and fractal
dimension shows an inverse relation to the base fluid’s viscosity. This paper investigates the role of viscosity of the base fluid on particle dynamics and thermal diffusivity of the nanofluid to explore its applicability in various thermal systems, thereby suggesting a method to tune the sample entropy through proper selection of base fluid. Ključne besede: MWCNT, thermal lens, fractals, nonlinear time series, phase portrait, sample entropy Objavljeno v RUNG: 28.06.2022; Ogledov: 2313; Prenosov: 0 Gradivo ima več datotek! Več... |