Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 6 / 6
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Spectroscopic insights into the electrochemical mechanism of rechargeable calcium/sulfur batteries
Antonio Scafuri, Romain Berthelot, Klemen Pirnat, Alen Vižintin, Jan Bitenc, Giuliana Aquilanti, Dominique Foix, Rémi Dedryvère, Iztok Arčon, Robert Dominko, Lorenzo Stievano, 2020, izvirni znanstveni članek

Opis: Calcium batteries represent a promising alternative to lithium metal systems. The combination of the low redox potential and low cost and the energy-dense calcium anode (2073 mAh/cm3, similar to 2044 mAh/cm3 for Li) with appropriate low-cost cathode materials such as sulfur could produce a game-changing technology in several fields of applications. In this work, we present the reversible activity of a proof-of-concept Ca/S battery at room temperature, characterized by a surprising medium-term cycling stability with low polarization, promoted by the use of a simple positive electrode made of sulfur supported on an activated carbon cloth scaffold, and a state-of-the-art fluorinated alkoxyborate-based electrolyte. Insights into the electrochemical mechanism governing the chemistry of the Ca/S system were obtained for the first time by combining X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. The mechanism implies the formation of different types of soluble polysulfide species during both charge and discharge at room temperature, and the formation of solid CaS at the end of discharge. The reversible electrochemical activity is proven by the reformation of elemental sulfur at the end of the following charge. These promising results open the way to the comprehension of emerging Ca/S systems, which may represent a valid alternative to Mg/S and Li/S batteries.
Ključne besede: Calcium/Sulfur Batteries EXAFS, XANES
Objavljeno v RUNG: 17.10.2020; Ogledov: 3527; Prenosov: 0
Gradivo ima več datotek! Več...

2.
Thioether-crown-rich calix[4]arene porous polymer for highly efficient removal of mercury from water
Dinesh Shetty, Tina Škorjanc, izvirni znanstveni članek

Ključne besede: Mercury, Sulfur, Metals, Adsorption, Polymers
Objavljeno v RUNG: 02.09.2020; Ogledov: 3436; Prenosov: 0
Gradivo ima več datotek! Več...

3.
Role of Cu current collector on electrochemical mechanism of Mg–S battery
Ana Robba, Maja Mežnar, Alen Vižintin, Jan Bitenc, Jernej Bobnar, Iztok Arčon, Anna Randon-Vitanova, Robert Dominko, 2020, izvirni znanstveni članek

Opis: Development of magnesium sulfur battery is accompanied with all known difficulties present in Li–S batteries, however with even more limited choice of electrolytes. In the present work, the influence of current collector on electrochemical mechanism was investigated in light of different reports where improved behavior was ascribed to electrolyte. Notable differences in cycling behavior are reported when Al current collector is replaced by Cu current collector independent of electrolyte. The initial reduction of sulfur follows similar reaction path no mater of current collector, but formation of MgS can be in competition with formation of CuS in the presence of Cu cations. With the subsequent cycling cells prepared from cathodes deposited on Cu current collector show decrease in the voltage and formation of single plateau during cycling. The change corresponds to the involvement of Cu into the reaction and formation of redox couple Mg/CuS as determined by Cu K-edge XANES measurements. Corrosion of Cu foil is identified by SEM and serves as a source of Cu cations for the chemical reaction between Cu and polysulfides. Mg/CuS redox couple shows improved cycling stability, but theoretical energy density is severely reduced due to substitution of S with CuS as cathode active material.
Ključne besede: Magnesium Sulfur Rechargeable batteries Current collector Copper Corrosion
Objavljeno v RUNG: 16.01.2020; Ogledov: 3582; Prenosov: 0
Gradivo ima več datotek! Več...

4.
MINERALOGY AND GEOMICROBIOLOGY IN ACTIVE VOLCANIC CAVE ENVIRONMENTS IN CENTRAL AMERICA
Andres Ulloa Carmiol, 2019, doktorska disertacija

Opis: Recently, the study of mineralogical and geomicrobiological interactions in volcanic caves is gaining relevance, because there are many factors to consider them as Mars analogues for astrobiology and planetary sciences. In addition, sulfuric acid caves have also shown to be an important field of study for the understanding of chemolithoautotrophic metabolic pathways, especially in regard to the biogeochemical cycle of sulfur compounds. Hitherto, sulfur-rich volcanic caves found in Central America were almost unknown to the scientific community. This work presents the mineralogical and microbiological diversity and the potential geomicrobiological links found in active volcanic settings, such as Cueva los Minerales (CMI) and Cueva los Mucolitos (CMU) at Irazú volcano (Costa Rica), and Cueva Hoyo de Koppen (CHK) at El Hoyo volcano (Nicaragua). The volcanic caves at Irazú volcano (Costa Rica) are located in the northwest (NW) foothills of the main crater. These caves became accessible after the partial collapse of the NW sector of the Irazú volcano in 1994, offering the opportunity to investigate in situ active minerogenetic processes. Detailed mineralogical and geochemical analyses were performed to study the speleothems at CMI and CMU. Mineralogical analyses included X-ray diffraction (XRD) and Raman spectroscopy, while geochemical characterization was done using Energy Dispersive X-ray spectroscopy (EDX) coupled to Scanning Electron Microscopy (SEM). In noveladdition, measurements of cave environmental parameters, cave drip water, and a compilation of geochemical analyses of the Irazú volcanic lake (located ca. 150 m above the cave level) and fumarole analyses, were conducted between 1991 and 2014. Forty-eight different mineral phases were identified, mostly rare hydrated sulfates of the alunite, halotrichite, copiapite, kieserite and rozenite groups; thirteen of which are described here, as cave minerals, for the first time, i.e. aplowite, bieberite, boyleite, dietrichite, ferricopiapite, ferrinatrite, lausenite, lishizhenite, magnesiocopiapite, marinellite, pentahydrite, szomolnokite, and wupatkiite. The presence of other novel cave minerals, such as tolbachite, mercallite, rhomboclase, cyanochroite, and retgersite, is likely, but this was not possible to confirm by the various mineralogical techniques employed in this study. It was determined that uplifting of sulfurous gases, water percolation from the Irazú volcanic lake, and hydrothermal interactions with the volcanic host rock are responsible for such extreme mineralogical diversity. Moreover, acidic (pH < 2) viscous biofilms, known as snottites, were observed hanging from both, walls and ceiling, of the caves at Irazú volcano, in close relation with the presence of sulfate minerals. Knowledge about snottites in volcanic caves is scarce, being biofilms present in carbonated rocks the most studied, e.g. at Frasassi and Acquasanta caves (Italy), and Cueva de Villa Luz and Luna Azufre (Mexico). 16S rRNA techniques (with primers for target Bacteria and Archaea), together with bioinformatics analyses, were used to investigate the snottites from CMU and CMI. The results indicated that both prokaryotic groups in the snottites offer a vast metabolic potential to execute various reactions, including redox reactions. The phylogenetic findings revealed that approximately 65% of the identified taxa corresponded to species related to sulfur-oxidizing metabolic pathways (e.g., Leptospirillum, Mycobacterium, Acidithiobacillus and Acidiphilium), while just 0.04% corresponded to sulfur-reducing species (Desulfosporosinus). Since sulfur-oxidizing microorganisms appeared to be dominant in the acidic snottites, induced-gypsum precipitation by changes in micro environmental conditions, is strongly suggested as the path for biomineralization at the studied caves. 34S isotope signature of sulfur minerals presented negative values (from -16.2 to -3.4 ‰), comparable with data obtained...
Ključne besede: Volcanic caves, Costa Rica, Irazú, Cueva los Mucolitos, Cueva los Minerales, Nicaragua, Hoyo, Cueva Hoyo de Koppen, mineralogy, sulfur isotopes, hydrated sulfates, active volcano, microbiology, snottites, geomicrobiology, astrobiology, Mars analogue.
Objavljeno v RUNG: 15.04.2019; Ogledov: 4865; Prenosov: 176
.pdf Celotno besedilo (16,65 MB)
Gradivo ima več datotek! Več...

5.
A Mechanistic Study of Magnesium Sulfur Batteries
Ana Robba, Alen Vižintin, Jan Bitenc, Gregor Mali, Iztok Arčon, Matjaž Kavčič, Matjaž Žitnik, Klemen Bučar, Giuliana Aquilanti, Charlotte Martineau-Corcos, Anna Randon-Vitanova, Robert Dominko, 2017, izvirni znanstveni članek

Opis: Magnesium sulfur batteries are considered as attractive energy storage devices due to the abundance of electrochemically active materials and high theoretical energy density. Here we report the mechanism of a Mg-S battery operation, which was studied in the presence of simple and commercially available salts dissolved in a mixture of glymes. The electrolyte offers high sulfur conversion into MgS in the first discharge with low polarization. The electrochemical conversion of sulfur with magnesium proceeds through two well-defined plateaus, which correspond to the equilibrium between sulfur and polysulfides (high-voltage plateau) and polysulfides and MgS (low-voltage plateau). As shown by XANES, RIXS and NMR studies, the end discharge phase involves MgS with Mg atoms in a tetrahedral environment resembling the wurtzite structure, while chemically synthesized MgS crystalizes in the rock-salt structure with octahedral coordination of magnesium.
Ključne besede: magnesium, sulfur, rechargeable batteries, XAS, NMR
Objavljeno v RUNG: 19.10.2017; Ogledov: 5119; Prenosov: 0
Gradivo ima več datotek! Več...

6.
The mechanism of Li2S activation in lithium-sulfur batteries: Can we avoid the polysulfide formation?
Alen Vižintin, Laurent Chabanne, Elena Tchernychova, Iztok Arčon, Lorenzo Stievano, Giuliana Aquilanti, Markus Antonietti, Tim-Patric Fellinger, Robert Dominko, 2017, izvirni znanstveni članek

Opis: Electrochemical reactions in the LieS batteries are considered as a multistep reaction process with at least 2e3 equilibrium states. Here we report a possibility of having a conversion of Li2S into sulfur without detectible formation of polysulfides. That was confirmed by using a novel material system consisting of carbon coated Li2S particles prepared by carbothermal reduction of Li2SO4. Two independent in operando measurements showed direct oxidation of Li2S into sulfur for this system, with almost negligible formation of polysulfides at potentials above 2.5 V vs. Li/Liþ. Our results link the diversity of first charge profiles in the literature to the Li2S oxidation mechanism and show the importance of ionic wiring within the material. Furthermore, we demonstrate that the Li2S oxidation mechanism depends on the relative amount of soluble sulfur in the electrolyte. By controlling the type and the amount of electrolyte within the encapsulating carbon shell, it is thereby possible to control the reaction mechanism of Li2S activation.
Ključne besede: Lithium-sulfur batteries Li2S active material XAS UV/Vis spectroscopy Li2S activation
Objavljeno v RUNG: 03.03.2017; Ogledov: 5938; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.02 sek.
Na vrh