Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
The Cherenkov Telescope Array view of the Galactic Center region
Aion Viana, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci

Opis: Among all the high-energy environments of our Galaxy, the Galactic Center (GC) region is definitely the richest. It harbors a large amount of non-thermal emitters, including the closest supermassive black hole, dense molecular clouds, regions with strong star forming activity, multiple supernova remnants and pulsar wind nebulae, arc-like radio structures, as well as the base of what may be large-scale Galactic outflows, possibly related to the Fermi Bubbles. It also contains a strong diffuse TeV gamma-ray emission along the Galactic ridge, with a disputed origin, including the presence of a possible Pevatron, unresolved sources, and an increased relevance of the diffuse sea of cosmic rays. This very rich region will be one of the key targets for the next generation ground-based observatory for gamma-ray astronomy, the Cherenkov Telescope Array (CTA). Here we review the CTA science case for the study of the GC region, and present the planned survey strategy. These observations are simulated and we assess CTA’s potential to better characterize the origin and nature of a selection of gamma-ray sources in the region.
Ključne besede: Galactic Center (GC) region, the Cherenkov Telescope Array (CTA) Observatory, supermassive black hole, molecular clouds, star forming regions
Objavljeno v RUNG: 12.11.2024; Ogledov: 448; Prenosov: 8
.pdf Celotno besedilo (2,78 MB)
Gradivo ima več datotek! Več...

2.
Studying TDEs in the era of LSST
Katja Bricman, Andreja Gomboc, 2019, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: The observing strategy with continuous scanning and large sky coverage of the upcoming ground-based Large Synoptic Survey Telescope (LSST) will make it a perfect tool in search of rare transients, such as Tidal Disruption Events (TDEs). Bright optical flares resulting from tidal disruption of stars by their host supermassive black hole (SMBH) can provide us with important information about the mass of the SMBH involved in the disruption and thus enable the study of quiescent SMBHs, which represent a large majority of SMBHs found in centres of galaxies. These types of transients are extremely rare, with only about few tens of candidates discovered so far. It is expected that the LSST will provide a large sample of new TDE light curves. Here we present simulations of TDE observations using an end-to-end LSST simulation framework. Based on the analysis of simulated light curves we estimate the number of TDEs with good quality light curves the LSST is expected to discover in 10 years of observations. In addition, we investigate whether TDEs observed by the LSST could be used to probe the SMBH mass distribution in the universe. The participation at this conference is supported by the Action CA16104 Gravitational waves, black holes and fundamental physics (GWverse), supported by COST (European Cooperation in Science and Technology).
Objavljeno v RUNG: 04.01.2021; Ogledov: 3816; Prenosov: 0

Iskanje izvedeno v 0.01 sek.
Na vrh