Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 5 / 5
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
First time-resolved leader spectra associated with a downward terrestrial gamma-ray flash detected at the Telescope Array Surface Detector
N. Kieu, R. U. Abbasi, M. M. F. Saba, J. W. Belz, P. R. Krehbiel, M. A. Stanley, F. J. Gordillo-Vazquez, M. Passas-Varo, T. Warner, Jon Paul Lundquist, 2024, izvirni znanstveni članek

Opis: Optical emissions associated with Terrestrial Gamma ray Flashes (TGFs) have recently become important subjects in space‐based and ground‐based observations as they can help us understand how TGFs are produced during thunderstorms. In this paper, we present the first time‐resolved leader spectra of the optical component associated with a downward TGF. The TGF was observed by the Telescope Array Surface Detector (TASD) simultaneously with other lightning detectors, including a Lightning Mapping Array (LMA), an INTerFerometer (INTF), a Fast Antenna (FA), and a spectroscopic system. The spectroscopic system recorded leader spectra at 29,900 frames per second (33.44 s time resolution), covering a spectral range from 400 to 900 nm, with 2.1 nm per pixel. The recordings of the leader spectra began 11.7 ms before the kA return stroke and at a height of 2.37 km above the ground. These spectra reveal that optical emissions of singly ionized nitrogen and oxygen occur between 167 s before and 267 s after the TGF detection, while optical emissions of neutrals (H I, 656 nm; N I, 744 nm, and O I, 777 nm) occur right at the moment of the detection. The time‐dependent spectra reveal differences in the optical emissions of lightning leaders with and without downward TGFs.
Ključne besede: Telescope Array Surface Detector, terrestrial gamma‐ray flashes, time‐resolved tgf leader spectra
Objavljeno v RUNG: 22.04.2025; Ogledov: 22; Prenosov: 0
.pdf Celotno besedilo (2,56 MB)
Gradivo ima več datotek! Več...

2.
AugerPrime surface detector electronics
A. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, izvirni znanstveni članek

Opis: Operating since 2004, the Pierre Auger Observatory has led to major advances in our understanding of the ultra-high-energy cosmic rays. The latest findings have revealed new insights that led to the upgrade of the Observatory, with the primary goal of obtaining information on the primary mass of the most energetic cosmic rays on a shower-by-shower basis. In the framework of the upgrade, called AugerPrime, the 1660 water-Cherenkov detectors of the surface array are equipped with plastic scintillators and radio antennas, allowing us to enhance the composition sensitivity. To accommodate new detectors and to increase experimental capabilities, the electronics is also upgraded. This includes better timing with up-to-date GPS receivers, higher sampling frequency, increased dynamic range, and more powerful local processing of the data. In this paper, the design characteristics of the new electronics and the enhanced dynamic range will be described. The manufacturing and test processes will be outlined and the test results will be discussed. The calibration of the SD detector and various performance parameters obtained from the analysis of the first commissioning data will also be presented.
Ključne besede: ultra-high-energy cosmic rays, Pierre Auger Observatory, AugerPrime detector upgrade, surface detector array, surface detector electronics
Objavljeno v RUNG: 18.10.2023; Ogledov: 3012; Prenosov: 7
.pdf Celotno besedilo (2,07 MB)
Gradivo ima več datotek! Več...

3.
4.
Search for EeV protons of galactic origin
R.U. Abbasi, Jon Paul Lundquist, 2016, izvirni znanstveni članek

Opis: Cosmic rays in the energy range 10^18.0–10^18.5 eV are thought to have a light, probably protonic, composition. To study their origin one can search for anisotropy in their arrival directions. Extragalactic cosmic rays should be isotropic, but galactic cosmic rays of this type should be seen mostly along the galactic plane, and there should be a shortage of events coming from directions near the galactic anticenter. This is due to the fact that, under the influence of the galactic magnetic field, the transition from ballistic to diffusive behavior is well advanced, and this qualitative picture persists over the whole energy range. Guided by models of the galactic magnetic field that indicate that the enhancement along the galactic plane should have a standard deviation of about 20° in galactic latitude, and the deficit in the galactic anticenter direction should have a standard deviation of about 50° in galactic longitude, we use the data of the Telescope Array surface detector in 10^18.0 to 10^18.5 eV energy range to search for these effects. The data are isotropic. Neither an enhancement along the galactic plane nor a deficit in the galactic anticenter direction is found. Using these data we place an upper limit on the fraction of EeV cosmic rays of galactic origin at 1.3% at 95% confidence level.
Ključne besede: Cosmic ray, Galactic protons, Telescope array, Surface detector
Objavljeno v RUNG: 30.04.2020; Ogledov: 3972; Prenosov: 0
Gradivo ima več datotek! Več...

5.
TA Anisotropy Summary
K. Kawata, Jon Paul Lundquist, 2019, objavljeni znanstveni prispevek na konferenci

Opis: The Telescope Array (TA) is the largest ultra-high-energy cosmic-ray (UHECR) detector in the northern hemisphere. It consists of an array of 507 surface detectors (SD) covering a total 700 km^2 and three fluorescence detector stations overlooking the SD array. In this proceedings, we summarize recent results on the search for directional anisotropy of UHECRs using the latest dataset collected by the TA SD array. We obtained hints of the anisotropy of the UHECRs in the northern sky from the various analyses.
Ključne besede: cosmic radiation, UHE detector, fluorescence detector, surface, Telescope Array Experiment, anisotropy, experimental results
Objavljeno v RUNG: 28.04.2020; Ogledov: 4617; Prenosov: 82
.pdf Celotno besedilo (1,88 MB)

Iskanje izvedeno v 0.02 sek.
Na vrh