Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 11
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
The Cherenkov Telescope Array
Daniel Mazin, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci

Opis: The Cherenkov Telescope Array (CTA) is the next generation ground-based observatory for gamma-ray astronomy at very-high energies. It will be capable of detecting gamma rays in the energy range from 20 GeV to more than 300 TeV with unprecedented precision in energy and directional reconstruction. With more than 100 telescopes of three different types it will be located in the northern hemisphere at La Palma, Spain, and in the southern at Paranal, Chile. CTA will be one of the largest astronomical infrastructures in the world with open data access and it will address questions in astronomy, astrophysics and fundamental physics in the next decades. In this presentation we will focus on the status of the CTA construction, the status of the telescope prototypes and highlight some of the physics perspectives.
Ključne besede: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array, CTA sensitivity, gamma-ray bursts, POpulation Synthesis Theory Integrated project for very high-energy emission
Objavljeno v RUNG: 04.12.2023; Ogledov: 956; Prenosov: 3
.pdf Celotno besedilo (27,92 MB)
Gradivo ima več datotek! Več...

2.
POSyTIVE : a GRB population study for the Cherenkov Telescope Array
Maria Grazia Bernardini, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci

Opis: One of the central scientific goals of the next-generation Cherenkov Telescope Array (CTA) is the detection and characterization of gamma-ray bursts (GRBs). CTA will be sensitive to gamma rays with energies from about 20 GeV, up to a few hundred TeV. The energy range below 1 TeV is particularly important for GRBs. CTA will allow exploration of this regime with a ground-based gamma-ray facility with unprecedented sensitivity. As such, it will be able to probe radiation and particle acceleration mechanisms at work in GRBs. In this contribution, we describe POSyTIVE, the POpulation Synthesis Theory Integrated project for very high-energy emission. The purpose of the project is to make realistic predictions for the detection rates of GRBs with CTA, to enable studies of individual simulated GRBs, and to perform preparatory studies for time-resolved spectral analyses. The mock GRB population used by POSyTIVE is calibrated using the entire 40-year dataset of multi-wavelength GRB observations. As part of this project we explore theoretical models for prompt and afterglow emission of long and short GRBs, and predict the expected radiative output. Subsequent analyses are performed in order to simulate the observations with CTA, using the publicly available ctools and Gammapy frameworks. We present preliminary results of the design and implementation of this project.
Ključne besede: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array, CTA sensitivity, gamma-ray bursts, population Synthesis Theory, very high-energy emission
Objavljeno v RUNG: 04.12.2023; Ogledov: 1275; Prenosov: 1
.pdf Celotno besedilo (1,50 MB)
Gradivo ima več datotek! Več...

3.
First results from the AugerPrime Radio Detector
T. Fodran, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, objavljeni znanstveni prispevek na konferenci

Opis: The Pierre Auger Observatory investigates the properties of the highest-energy cosmic rays with unprecedented precision. The aim of the AugerPrime upgrade is to improve the sensitivity to the primary particle type. The improved mass sensitivity is the key to exploring the origin of the highest-energy particles in the Universe. The purpose of the Radio Detector (as part of AugerPrime) is to extend the sensitivity of the mass measurements to zenith angles in the range from 65° to 85°. A radio antenna, sensitive in two polarization directions and covering a bandwidth from 30 to 80 MHz, will be added to each of the 1661 surface detector stations over the full 3000 km^2 area, forming the world’s largest radio array for the detection of cosmic particles. Since November 2019, an engineering array comprised of ten stations has been installed in the field. The radio antennas are calibrated using the Galactic (diffuse) emission. The sidereal modulation of this signal is monitored continuously and is used to obtain an end-to-end calibration from the receiving antenna to the ADC in the read-out electronics. The calibration method and first results will be presented. The engineering array is also fully integrated in the data acquisition of the Observatory and records air showers regularly. The first air showers detected simultaneously with the water-Cherenkov detectors and the Radio Detectors will be presented. Simulations of the detected showers, based on the reconstructed quantities, have been conducted with CORSIKA/CoREAS. A comparison of the measured radio signals with those predicted by simulations exhibits satisfying agreement.
Ključne besede: Pierre Auger Observatory, AugerPrime, indirect detection, radio detection, radio antenna array, surface detection, ground array, ultra-high energy, cosmic rays, galactic radio emission
Objavljeno v RUNG: 04.10.2023; Ogledov: 934; Prenosov: 6
.pdf Celotno besedilo (1,62 MB)
Gradivo ima več datotek! Več...

4.
5.
6.
High Energy Emission from Gamma Ray Bursts
Lili Yang, predavanje na tuji univerzi

Opis: Gamma Ray Bursts (GRBs) are the most energetic explosions in the universe, and they have been proposed as the most promising candidate sources of ultra-high energy cosmic rays (UHECRs). As a result of interactions of UHECR within the host environment and during their propagation towards Earth, high energy neutrinos and photons are also expected from both prompt and afterglow emission. In this talk, I will review the standard theory of particle acceleration and production in a GRB fireball, and multi-wavelength and multi-messeger observations of GRB emission. I will present the prediction of PeV — EeV neutrino production and evidence of GeV gamma ray radiation, and the expected detection in IceCube, Pierre Auger Observatory and CTA (the next generation of Imaging Atmospheric Cherenkov Telescopes). The investigation of high-energy particles will provide insight into the nature and complicated mechanisms of GRBs.
Ključne besede: Gamma-Ray Bursts, high-energy emission, blastwave afterglow
Objavljeno v RUNG: 06.12.2016; Ogledov: 5192; Prenosov: 0
Gradivo ima več datotek! Več...

7.
8.
9.
10.
Iskanje izvedeno v 0.05 sek.
Na vrh