Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 86
Na začetekNa prejšnjo stran123456789Na naslednjo stranNa konec
1.
Search for a diffuse flux of photons with energies above tens of PeV at the Pierre Auger Observatory
A. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, izvirni znanstveni članek

Opis: Diffuse photons of energy above 0.1 PeV, produced through the interactions between cosmic rays and either interstellar matter or background radiation fields, are powerful tracers of the distribution of cosmic rays in the Galaxy. Furthermore, the measurement of a diffuse photon flux would be an important probe to test models of super-heavy dark matter decaying into gamma-rays. In this work, we search for a diffuse photon flux in the energy range between 50 PeV and 200 PeV using data from the Pierre Auger Observatory. For the first time, we combine the air-shower measurements from a 2 sq. km surface array consisting of 19 water-Cherenkov surface detectors, spaced at 433 m, with the muon measurements from an array of buried scintillators placed in the same area. Using 15 months of data, collected while the array was still under construction, we derive upper limits to the integral photon flux ranging from 13.3 to 13.8 per sq. km, per steradian, and per year above tens of PeV. We extend the Pierre Auger Observatory photon search program towards lower energies, covering more than three decades of cosmic-ray energy. This work lays the foundation for future diffuse photon searches: with the data from the next 10 years of operation of the Observatory, this limit is expected to improve by a factor of ∼20.
Ključne besede: ultra-high-energy (UHE) cosmic rays, UHE photons, Pierre Auger Observatory, diffuse photon flux, extensive air showers, water-Cherenkov surface detectors, underground muon detectors
Objavljeno v RUNG: 26.05.2025; Ogledov: 370; Prenosov: 6
.pdf Celotno besedilo (2,21 MB)
Gradivo ima več datotek! Več...

2.
The Radio Detector of the Pierre Auger Observatory
J. R. Hörandel, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, objavljeni znanstveni prispevek na konferenci

Opis: To measure the properties of the highest-energy particles in the Universe with unprecedented precision, we have upgraded the Pierre Auger Observatory. A crucial component of this upgrade is the Radio Detector. Radio antennas have been added to all 1660 positions of the surface detector array, covering an area of 3000 sq. km. The antennas detect radio emission, emitted by extensive air showers in the frequency band from 30 to 80 MHz in two polarization directions - one parallel and one perpendicular to the Earth magnetic field. For inclined air showers with zenith angles above 60 degrees, the radio antennas provide a clean measurement of the electromagnetic shower component, while the water-Čerenkov detectors measure the muonic component. Large-scale deployment in the Argentinian Pampa Amarilla started around June 2023 and has been completed in 2024. The deployment is accompanied by extensive calibration efforts both, in the laboratory and in the field. The signal chain is characterized in the laboratory. Galactic radio emission is used as a reference signal and the antenna patterns are verified through in-situ calibrations with a reference antenna. Commissioning of the system is in full progress as well as the analysis of first measured air showers. We present first air showers measured with the largest radio detector for cosmic rays in the world.
Ključne besede: ultra-high-energy cosmic rays, Pierre Auger Observatory, extensive air showers, surface detectors, Water-Cherenkov detectors, Surface Scintillator detectors
Objavljeno v RUNG: 16.05.2025; Ogledov: 478; Prenosov: 9
.pdf Celotno besedilo (7,10 MB)
Gradivo ima več datotek! Več...

3.
Machine learning-based analyses using surface detector data of the Pierre Auger Observatory
Steffen Hahn, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, objavljeni znanstveni prispevek na konferenci

Opis: The Pierre Auger Observatory is the largest detector for the study of extensive air showers induced by ultra-high-energy cosmic rays (UHECRs). Its hybrid detector design allows the simultaneous observation of different parts of the shower evolution using various detection techniques. To accurately understand the physics behind the origin of UHECRs, it is essential to determine their mass composition. However, since UHECRs cannot be measured directly, estimating their masses is highly non-trivial. The most common approach is to analyze mass-sensitive observables, such as the number of secondary muons and the atmospheric depth of the shower maximum. An intriguing part of the shower to estimate these observables is its footprint. The shower footprint is detected by ground-based detectors, such as the Water-Cherenkov detectors (WCDs) of the Surface Detector (SD) of the Observatory, which have an uptime of nearly 100%, resulting in a high number of observed events. However, the spatio-temporal information stored in the shower footprints is highly complex, making it very challenging to analyze the footprints using analytical and phenomenological methods. Therefore, the Pierre Auger Collaboration utilizes machine learning-based algorithms to complement classical methods in order to exploit the measured data with unprecedented precision. In this contribution, we highlight these machine learning-based analyses used to determine high-level shower observables that help to infer the mass of the primary particle, with a particular focus on analyses using the shower footprint detected by the WCDs and the Surface Scintillator Detectors (SSD) of the SD. We show that these novel methods show promising results on simulations and offer improved reconstruction performance when applied to measured data.
Ključne besede: ultra-high-energy cosmic rays (UHECRs), extensive air showers, Pierre Auger Observatory, surface detector, Water-Cherenkov detectors (WCDs), Surface Scintillator Detectors (SSDs), UHECR mass composition, air-shower footprint, machine learning
Objavljeno v RUNG: 16.05.2025; Ogledov: 420; Prenosov: 6
.pdf Celotno besedilo (1,48 MB)
Gradivo ima več datotek! Več...

4.
Modeling of solvent role in protein folding experiments : dissertation
Knarik Yeritsyan, 2025, doktorska disertacija

Opis: The Zimm-Bragg (ZB) model serves as a fundamental framework for elucidating conformational transitions in biopolymers, offering simplicity and efficacy in processing experimental data. This study provides a comprehensive review of the Zimm-Bragg model and its Hamiltonian formulation, with particular emphasis on incorporating water interactions and chain size effects into the computational framework. We propose a modified ZB model that accounts for water-polypeptide interactions, demonstrating its ability to describe phenomena such as cold denaturation and helix-coil transitions. In the realm of NanoBioTechnologies, the manipulation of short polypeptide chains is commonplace. Experimental investigation of these chains in vitro often relies on techniques like Circular Dichroism (CD) and timeresolved infrared spectroscopy. Determining interaction parameters necessitates processing the temperature dependence of the normalized degree of helicity through model fitting. Leveraging recent advancements in the Hamiltonian formulation of the Zimm and Bragg model, we explicitly incorporate chain length and solvent effects into the theoretical description. The resulting expression for helicity degree adeptly fits experimental data, yielding hydrogen bonding energies and nucleation parameter values consistent with field standards. Differential Scanning Calorimetry (DSC) stands as a potent tool for measuring the specific heat profile of materials, including proteins. However, relating the measured profile to microscopic properties requires a suitable model for fitting. We propose a novel algorithm for processing DSC experimental data based on the ZB theory of protein folding in water. This approach complements the classical two-state paradigm and provides insights into protein-water and intraprotein hydrogen bonding energies. An analytical expression for heat capacity, considering water interaction, is derived and successfully applied to fit numerous DSC experimental datasets reported in the literature. Additionally, we compare this approach with the classical two-state model, demonstrating its efficacy in fitting DSC data. Furthermore, we have developed and launched a free online tool for processing CD and DSC experimental data related to protein folding, aiming to support scientific research.
Ključne besede: Zimm-Bragg model, conformational transitions, helix-coil transitions, cold denaturation, circular dichroism, differential scanning calorimetry, protein folding, water-protein interaction, hydrogen bonding energy, degree of helicity, short polypeptide chains, protein heat capacity, protein data analysis, dissertations
Objavljeno v RUNG: 27.01.2025; Ogledov: 1442; Prenosov: 13
.pdf Celotno besedilo (5,12 MB)

5.
Colloidal metal nanoparticles as a source for the growth of thin films
Saim Emin, 2022, objavljeni povzetek znanstvenega prispevka na konferenci (vabljeno predavanje)

Opis: Synthesis of colloidal nanoparticles (NPs) which offer good colloidal stability is quite important for different applications like spin-coating, dip-coating etc. Having metallic nanoparticles in the form of stable suspension allow the generation of thin films with desired thicknesses. We will present the production of different classes of materials starting from colloidal metal NPs. An example will be given on the preparation of Fe2O3 and WO3 thin films which are used in photoelectrochemical oxidation of water (e.g. water splitting). Another transformation which involves metallic NPs include the preparation of MoSe2 and WSe2 thin films which is achieved in a tube furnace at elevated temperatures. Very recently, the use of metallic NPs were also extended for the preparation of transition metal carbides. We managed to produce W2C and WC phases starting from metallic W NPs. The details of this phase conversion will be discussed. The presentation will provide details on how transition metallic NPs can be used to prepare metal oxide, metal selenide and metal carbides.
Ključne besede: colloidal metal nanoparticles, thin films, water splitting
Objavljeno v RUNG: 16.01.2025; Ogledov: 1117; Prenosov: 0
Gradivo ima več datotek! Več...

6.
Bad blue humanity : an exploration of extremes at the beach
Peter Purg, 2024, druga izvedena dela

Opis: Closing in on the sea, the workshop explores tensions and spaces between more-than-human body and media technologies. Participants discuss their relationships with water in its manifold manifestations (a.k.a. Blue Humanities), ranging from environmental debates and natural-science considerations to philosophical, historical and literary pondering – and not least body/media contact with the sea as such. Between the studio and the beach – where water, earth, air and fire create both cosy comfort and contrasting confrontation – either individual or group artistic works and interventions emerge.
Ključne besede: workshop, blue humanities, water, happening, body art
Objavljeno v RUNG: 16.10.2024; Ogledov: 1517; Prenosov: 0
Gradivo ima več datotek! Več...

7.
Expected performance of the Auger Radio Detector
Felix Schlüter, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2023, objavljeni znanstveni prispevek na konferenci

Opis: The Auger Radio Detector (RD) will increase the sky coverage and overall aperture for mass- sensitive measurements of ultra-high-energy cosmic rays with the Pierre Auger Observatory. The installation of over 1600 dual-polarized short aperiodic loaded loop antennas (SALLAs) on an area of about 3000 sq. km will enable the detection of highly inclined air showers via the emitted electromagnetic radiation in coincidence with the Auger water-Cherenkov detector array (SD). The combination of complementary information from both detectors yields a strong sensitivity to the mass composition of cosmic rays. We will present the expected performance of the RD to detect and reconstruct inclined air showers. This study features comprehensive sets of Monte-Carlo generated air showers, utilizes a complete description of the instrumental response of the radio antennas, and in-situ recorded background. The estimation of an energy- and direction-dependent aperture yields an expectation of about 3900 events with energies above 10[sup]19 eV being detected during 10 years of operation. From a full event reconstruction, we quantify the achievable energy resolution to be better than 10% at and beyond 10[sup]19 eV. With this at hand, the potential to measure the number of muons and discriminate between different cosmic-ray primaries in combination with the SD using inclined air showers is presented. The discrimination between proton- and iron-induced air showers yields a figure-of-merit of 1.6.
Ključne besede: Pierre Auger Observatory, ultra-high-energy cosmic rays, extensive air showers, Auger Radio Detector, Auger water-Cherenkov detector array, mass-sensitive UHECR measurements
Objavljeno v RUNG: 03.10.2024; Ogledov: 1156; Prenosov: 6
.pdf Celotno besedilo (917,68 KB)
Gradivo ima več datotek! Več...

8.
Hydrazone-linked covalent organic framework catalyst via efficient Pd recovery from wastewater
Mahira Bashri, Sushil Kumar, Pallab Bhandari, Sasi Stephen, Matthew J. O'Connor, Safa Gaber, Tina Škorjanc, Matjaž Finšgar, Gisha Elizabeth Luckachan, Blaž Belec, 2025, izvirni znanstveni članek

Opis: Global consumption and discharge of palladium (Pd) have raised environmental concerns but also present an opportunity for the sustainable recovery and reuse of this precious metal. Adsorption has proven to be an efficient method for the selective recovery of Pd from industrial wastewater. This study investigated a hydrazone-linked covalent organic framework (Tfpa-Od COF) as a potential material for the high-affinity adsorption of Pd2+ ions from wastewater, achieving a Kd value of 3.62 × 106 mL g–1. The electron-rich backbone of the COF contributes to its excellent selective removal efficiency (up to 100%) and adsorption capacity of 372.59 mg g–1. Furthermore, the Pd-adsorbed COF was evaluated as a sustainable catalyst for the Suzuki–Miyaura coupling reaction, demonstrating good catalytic conversion and recyclability. This work attempts to showcase a protocol for reusing waste palladium generated in water to fabricate heterogeneous catalysts and, thereby, promote the circular economy concept.
Ključne besede: covalent organic frameworks, sustainability, catalysis, palladium adsorption, water purification
Objavljeno v RUNG: 22.08.2024; Ogledov: 2055; Prenosov: 10
.pdf Celotno besedilo (4,04 MB)
Gradivo ima več datotek! Več...

9.
Processing CD and DSC data on protein folding with Zimm-Bragg model in water
Artem Badasyan, Knarik Yeritsyan, 2024, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: Circular Dichroism (CD) and Differential Scanning Calorimetry (DSC) data are processed with a novel model incorporating water effects and inter-/intra-molecular hydrogen bonding energies to better fit experimental data on protein folding as compared to the two-state approach.
Ključne besede: protein folding, circular dichroism, differential scanning calorimetry, water-protein interactions
Objavljeno v RUNG: 10.06.2024; Ogledov: 2202; Prenosov: 8
URL Povezava na datoteko
Gradivo ima več datotek! Več...

10.
Air-water interface-assisted synthesis and charge transport characterization of quasi-2d polyacetylene films with enhanced electron mobility via ring-opening polymerization of pyrrole
Kejun Liu, Nadiia Pastukhova, Egon Pavlica, Gvido Bratina, Xinliang Feng, 2024, drugi sestavni deli

Opis: Water surfaces catalyze some organic reactions more effectively, making them unique for 2D organic material synthesis. This report introduces a new synthesis method via surfactant-monolayer-assisted interfacial synthesis on water surfaces for ring-opening polymerization of pyrrole, producing distinct polypyrrole derivatives with polyacetylene backbones and ionic substitutions. The synthesis result in quasi 2D polyacetylene (q2DPA) film with enhanced charge transport behavior. We employed time-of-flight photoconductivity (TOFP) measurements using pulsed laser light of tunable wavelength for photoexcitation of the charge carriers within the q2DPA film. The charge transport was measured in the lateral direction as a function of external bias voltage ranging from 0 V to 200 V. We observed high electron mobility ({\mu}) of q2DPA reaching values of 375 cm2 V-1 s-1 at bias voltage Vb = -20V and photon energy of 3.8 eV.
Ključne besede: air-water interface-assisted synthesis, time-of-flight photoconductivity, 2D polymers, quasi 2D polyacetylene, q2DPA
Objavljeno v RUNG: 09.04.2024; Ogledov: 2877; Prenosov: 7
.pdf Celotno besedilo (3,89 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.03 sek.
Na vrh