1. THERMOCHEMICAL CONVERSION OF MARINE LITTER INTO FUELS AND CHEMICALSGian Claudio Paolo Faussone, 2023, doktorska disertacija Opis: Plastic waste is steadily polluting oceans and environments. Even when collected, it is still predominantly dumped or incinerated for energy recovery at the cost of CO2. However, no simple solution exists to deal with marine litter (ML). Overcoming limitations in collection, and in the environmentally, technically and economically acceptable use of the collected material, is of paramount importance. Chemical recycling can contribute to the transition towards a circular economy but the high variety and contamination of real waste remains the biggest challenge. In my research more than 100 kg of actual benthic ML from the North Adriatic Sea, including polyolefins packaging and polyamides fishing nets, were successfully processed “as-is” without pretreatment and converted into standardized marine gas oil (MGO) compliant with the ISO8217 via the pyrolysis and the distillation process; with 8 potential harmful emissions linked to the pyrolysis process monitored and curbed to safe levels. Approximately 45 wt% yield of raw pyrolysis oil (RPO) was obtained of which 50% (v/v) being MGO. RPO and its distillates were chemically characterized via GC-MS. For all samples, more than 30% of the detected compounds were identified. 2,4-dimethyl-1-heptene, a marker of PP pyrolysis, is the most represented peak in the chemical signature of all the marine litter samples, and it differentiates commercial and pyrolysis marine gasoil. Besides, I studied the detailed composition and the steam cracking performance of distilled pyrolysis oil fractions in the naphtha-range of ML and mixed municipal plastic waste (MPW) considered unsuitable for mechanical recycling. Advanced analytical techniques including comprehensive two-dimensional gas chromatography (GC × GC) coupled with various detectors and inductively coupled plasma – mass spectrometry (ICP-MS) was applied to characterize the feedstocks and to understand how their properties affect the steam cracking performance. Both waste-derived naphtha fractions were rich in olefins and aromatics (~70% in MPW naphtha and ~51% in ML naphtha) next to traces of nitrogen, oxygen, chlorine and metals. ICP-MS analyses showed that sodium, potassium, silicon and iron were the most crucial metals that should be removed in further upgrading steps. Steam cracking of the waste-derived naphtha fractions resulted in lower light olefin yields compared to fossil naphtha used as benchmark, due to secondary reactions of aromatics and olefins. Coke formation of ML naphtha was slightly increased compared to fossil naphtha (~50%), while that of MPW naphtha was more than ~180% higher. It was concluded that mild upgrading of the waste-derived naphtha fractions or dilution with fossil feedstocks is sufficient to provide feedstocks suitable for industrial steam cracking. Waste plastics oil (WPO) obtained from a relatively large-scale batch rotary kiln pyrolysis reactor was collected and stored for 60 months in dark at 10 °C, periodically thoroughly characterized and finally tested as the drop-in fuel in internal combustion engine. It was evaluated by investigation of combustion process and emission formation phenomena under a wide range of operating parameters. The results were compared with those obtained with diesel fuel at the same injection and gas path parameters to provide a comprehensive basis for further development of control strategies. Finally, the solid residue from the pyrolysis process was evaluated for material recovery or safe disposal, thus closing the mass balance of the whole process. Due to the great contamination of the original feedstock, stabilization of solid residue is required to attain not hazardous waste criteria, but once stabilized with Portland concrete, it could even be employed as construction material, therefore transforming a problem into an opportunity. Ključne besede: marine litter, marine fuel, pyrolysis, circular economy, environmental impact, chemical recycling, steam-cracking, pyrolysis char Objavljeno: 12.05.2023; Ogledov: 121; Prenosov: 4
Polno besedilo (14,33 MB) |
2. Efficiency of the grid energy storage technology based on iron-chloride material cycleUroš Luin, doktorska disertacija Opis: Future high-capacity energy storage technologies are crucial for a highly renewable energy mix, and their mass deployment must rely on cheap and abundant materials, such as iron chloride. The iron chloride electrochemical cycle (ICEC), suitable for long-term grid energy storage using a redox potential change of Fe2+/Fe, involves the electrolysis of a highly concentrated aqueous FeCl2 solution yielding solid iron deposits. For the high overall energy efficiency of the cycle, it is crucial maximizing the energy efficiency of the electrolysis process. The thesis presents a study of the influence of electrolysis parameters on energy efficiency, performed in an industrial-type electrolyzer system. We studied the conductivity of the FeCl2 solution as a function of concentration and temperature and correlated it with the electrolysis energy efficiency as a function of current density. The contribution of the resistance polarization increases with the current density, causing a decrease in overall energy efficiency. The highest energy efficiency of 89 ±3 % was achieved using
2.5 mol dm-3 FeCl2 solution at 70 °C and a current density of 0.1 kA m-2.
In terms of the energy input per Fe mass, this means 1.88 Wh g-1. The limiting energy input per mass of the Fe-deposit, calculated by extrapolating experimental results toward Eocell potential, was found to be 1.76 Wh g-1. For optimal long-duration electrolysis efficiency and performance, the optimal catholyte concentration range is
1-2 mol dm-3 FeCl2. We performed in situ X-ray absorption spectroscopy experimental studies to validate theoretical conclusions from literature related to the population and structure of Fe-species in the FeCl2 (aq) solution at different concentrations (1 - 4 mol dm-3) and temperatures (25 - 80 °C). This revealed that at low temperature and low FeCl2 concentration, the octahedral first coordination sphere around Fe is occupied by one Cl ion at a distance of 2.33 (±0.02) Å and five H2O at a distance of 2.095 (±0.005) Å. The structure of the ionic complex gradually changes with an increase in temperature and/or concentration. The apical H2O is substituted by a Cl ion to yield a neutral Fe[Cl2(H2O)4]0. The transition from the charged Fe[Cl(H2O)5]+ to the neutral Fe[Cl2(H2O)4]0 causes a significant drop in the solution conductivity, which well correlates with the existing state-of-the-art conductivity models. An additional steric impediment of the electrolytic cell is caused by the predominant neutral species present in the catholyte solution at high concentration. This correlates with poor electrolysis performance at a very high catholyte concentration (4 mol dm-3 FeCl2), especially at high current densities (> 1 kA m-2). The neutral Fe[Cl2(H2O)4]0 complex negatively affects the anion exchange membrane ion (Cl-) transfer and lowers the concentration of electroactive species (Fe[Cl(H2O)5]+) at the cathode surface. The kinetics of hydrogen evolution from the reaction between Fe powder and HCl acid was studied under the first-order reaction condition. The activation energy was determined to be 55.3 kJ mol-1. Ključne besede: ICEC, Power-to-Solid, energy storage, hydrogen, ferrous chloride, electrolysis, Fe deposition, efficiency, XAS, structure and population, ionic species, ion association, conductivity Objavljeno: 18.04.2023; Ogledov: 185; Prenosov: 12 (1 glas)
Polno besedilo (4,34 MB) |
3. Oxygen vacancies engineering in metal oxide nanomaterials for efficient photo-electrocatalytic degradation of organic pollutants and chemical transformationsManel Machreki, 2022, doktorska disertacija Ključne besede: titanium dioxide nanotubes, hematite, oxygen vacancies, photoelectrochemical degradation of dye, ibuprofen, chemical transformation, glycerol, vanillyl alcohol, dissertations Objavljeno: 01.03.2023; Ogledov: 282; Prenosov: 13
Polno besedilo (5,71 MB) |
4. |
5. Electronic and chemical surface properties of Bi2Se3 derived compoundsZipporah Rini Benher, doktorska disertacija Ključne besede: Bismuth selenide derived compounds, surface chemical and electronic properties, topological insulators, single crystals, phase separation, inorganic bulk heterostructures, ix
Bridgman method, X-ray powder diffraction, scanning electron microscopy, photoelectron spectroscopy Objavljeno: 16.12.2022; Ogledov: 424; Prenosov: 6
Polno besedilo (9,56 MB) |
6. Numerical simulations of nozzles with gas and liquid focusing for production of micro-jetsGrega Belšak, 2022, doktorska disertacija Ključne besede: numerical simulations, OpenFOAM, liquid sheets, micro-jets, multiphase flow, converging nozzles, double flow focusing nozzle, gas compressibility, vacuum conditions, atmospheric conditions, operational parameters, liquid properties, dissertations Objavljeno: 07.12.2022; Ogledov: 524; Prenosov: 17
Polno besedilo (21,26 MB) |
7. |
8. Van der Waals heterostructuresVadym Tkachuk, doktorska disertacija Ključne besede: Graphene, hexagonal boron nitride, PDI8-CN2, organic semiconductor, heterostructure, charge transport, electronic properties, 2D crystal, 2D crystal transfer, tunneling. Objavljeno: 24.10.2022; Ogledov: 521; Prenosov: 19
Polno besedilo (38,13 MB) |
9. Structure optimisation of biopigment prodigiosin from Serratia marcescens ATCC 27117 and antimicrobial and anticancer properties of novel halogenated derivativesJelena Lazić, 2022, doktorska disertacija Opis: Prodigiosins (PGs) are a class of bacterial secondary metabolites with remarkable biological activities and colour. In this study, optimised fermentative production of prodigiosin (PG) using waste processed meat as a substrate has been achieved to levels of 83.1 ± 3.0 mg/L from a commercially available Serratia marcescens ATCC 27117 strain within 12 h. Methods were established for the reliable PG extraction from both the bacterial cell pellet and the culture supernatant, while gravitation column chromatography was used to obtain pure bacterial PG.
The structure of the isolated PG was optimised by environmentally acceptable oxidative bromination reactions, obtaining mono- and dibrominated derivatives (PG-Br and PG-Br2). Chemical structures were confirmed by structural characterisation using nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), showing that PG-Br is a mixture of two monobrominated isomers in approximately equal ratios, while PG-Br2 was afforded as a pure derivative.
PG and its brominated derivatives (Br-derivatives) showed anticancer potential with half-maximal inhibitory concentration (IC50) values ranging from 0.62 to 17.00 μg/mL on four tested cancer cell lines (A549 lung, A375 skin, MDA-MB-231 breast, HCT116 colon) and an induction of early apoptosis, but low selectivity against healthy cell lines (MRC-5 lung fibroblasts and HaCaT skin keratinocytes). All three PG, PG-Br and PG-Br2 compounds did not affect roundworms (Caenorhabditis elegans) at concentrations up to 50 μg/mL. However, an improved toxicity profile of Br-derivatives in comparison to the parent PG was observed in vivo using zebrafish (Danio rerio) model system, when 10 μg/mL applied at 6 h post fertilisation caused death rate of 100, 30 and 0% by PG, PG-Br and PG-Br2, respectively, which is a significant finding for further structural optimisations of bacterial PGs. Ključne besede: prodigiosin, Serratia marcescens, meat waste, halogenation, novel derivatives, anticancer activity, apoptosis, zebrafish embryotoxicity Objavljeno: 21.10.2022; Ogledov: 575; Prenosov: 27
Polno besedilo (3,39 MB) |
10. NONDESTRUCTIVE THERMAL, OPTICAL, CHEMICAL AND STRUCTURAL CHARACTERIZATION OF ADVANCED MATERIALS BY OPTOTHERMAL TECHNIQUESHanna Budasheva, doktorska disertacija Opis: Advanced materials are promising ones in application in fields where it is necessary to decrease energy consumption and ensure better performance at a lower cost. They are materials, which have enhanced properties compared to conventional materials in the field of their applications.1 The huge group of them contributes significantly to every aspect of our lives. Among them, chosen for the present study, are resins for passive sampling of iron species in natural water and sediments, anticorrosive coatings, and multilayered polysaccharide aerogels for medical applications.
The composition and structure of each material determine its chemical, mechanical and physical properties, consequently their performance.2 The ability to use advanced materials in areas where their impact will be significant is largely dependent on the ability to precisely determine their characteristics to identify their properties that are either unique or has a better value. Therefore, the development of new methods or improvement of already known ones will make a great contribution to the development of the fields of application of the selected materials.
The present study is focused on the examination of the chosen materials by determining their optical, chemical, thermal and structural properties for applying them further in the desired applications. To provide the needed characterization, optothermal techniques such as optothermal beam deflection spectrometry (BDS) and thermal lens spectrometry (TLS) are developed and applied.
This dissertation is composed of the following chapters: introduction, theoretical background, optothermal techniques, research goal, part I (gels for passive sampling of iron species in natural water and sediments), part II (anticorrosive coatings), part II (polysaccharide aerogels), references. The core of this dissertation is presented in chapters 5 to 7. Each of the chapters separately covers the information about a selected group of advanced materials, including the sections describing sample preparation, developing the required characterization method, results, and conclusion. The connection link of these chapters is the study of the diffusion process of iron into different types of binding gels in passive samplers; external composites through the anticorrosive layers; drugs into the surrounding during the drug delivery process.
In Part I, the BDS method for the study was chosen, it was optimized, and a detailed protocol was developed for the determination of iron in passive sampler gels. The iron residues in the initial solutions were checked by a suitably tuned TLS method. The developed technique was applied to get the iron species distribution in the gel samples deposited in the sediments in the Vrtojbica River. The method was applied to the gels applied on ice from Antarctica in order to obtain the iron species distribution on its surface as well. The obtained results were validated using the TLS, UV-Vis and ICP-MS methods. The chapter contains the analysis of the Fe diffusion depth into the resin sampler, which is presented for the first time. The information is obtained by using the mathematical model and applying it to the obtained practical results by frequency scanning of the gels. The crucial information about the thermal properties of their layers containing Fe-ions from the fitting procedure was extracted. On the basis of these results, information about the diffusion depth of Fe inside the gels was obtained, which has not been previously described in the literature.
In Part II, the porosity in the anticorrosion coatings on the basis of their thermal parameters was determined. For the first time, the opened porosity was extracted from the total one. The analysis of Si/Zr-based hybrid sol-gel coatings has shown that the addition of cerium salts into the sol-gel matrix produces changes in its physical, chemical and corrosion properties. And it was found that the sample with the biggest amount of incorporated zirconium and loaded with cerium has the lowest values of porosity and, hence, the best barrier properties of the coating. The obtained thermal parameters of the Si/Zr-based hybrid sol-gel coatings by BDS were validated by the use of the photothermal radiometry method. On the other hand, the analysis of siloxane methacrylate coating has shown that the sol-gel hybrid methodology offers an important route for modification of thermal properties by a combination of inorganic to organic contents where the former than as an integral part of the coating network affects the thermal properties without the need for introducing fillers or nanoparticles.
In Part III, the multilayered structure of the samples, containing hyaluronic acid, amoxicillin and fucoidan layers deposited on stainless support has been analyzed by the use of the BDS technique. The thermal parameters of each layer were determined, as well as their thickness. The results revealed the diffusion between neighboring layers and followed changes in the properties of the whole sample, which is reflected in its thermal properties. Such data for multilayered materials, which potentially can be used for drug delivery systems, are presented for the first time.
Presented results indicated the ability of the BDS system for the chemical characterisation of the solid materials, the detection of their thermal parameters; investigation of total, opened and closed porosity; determining the thickness of layers in multilayered structures. The TLS method served as the validating one for the purpose of getting comprehensive information in liquid samples about their chemical composition. In summary, this dissertation explores alternative ways to apply optothermal methods to various areas of advanced materials to characterize them in order to improve their initial properties. Ključne besede: optothermal beam deflection spectrometry, thermal lens spectrometry, diffusive gradients in thin films, iron species, anticorrosive layers, porosity, polysaccharide aerogels, multilayered structures Objavljeno: 29.08.2022; Ogledov: 728; Prenosov: 43
Polno besedilo (5,46 MB) |