1. First utilization of magnetically-assisted photocatalytic iron ▫$oxide-TiO_2$▫ nanocomposites for the degradation of the problematic antibiotic ciprofloxacin in an aqueous environmentJosip Radić, Gregor Žerjav, Lucija Jurko, Perica Bošković, Lidija Fras Zemljič, Alenka Vesel, Andraž Mavrič, Martina Gudelj, Olivija Plohl, 2024, izvirni znanstveni članek Opis: The emergence of antimicrobial resistance due to antibiotics in the environment presents significant public health, economic, and societal risks. This study addresses the need for effective strategies to reduce antibiotic residues, focusing on ciprofloxacin degradation. Magnetic iron oxide nanoparticles (IO NPs), approximately 13 nm in size, were synthesized and functionalized with branched polyethyleneimine (bPEI) to obtain a positive charge. These IO-bPEI NPs were combined with negatively charged titanium dioxide NPs (TiO2@CA) to form magnetically photocatalytic IO-TiO2 nanocomposites. Characterization techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), electrokinetic measurements, and a vibrating sample magnetometer (VSM), confirmed the successful formation and properties of the nanocomposites. The nanocomposites exhibited a high specific surface area, reduced mobility of photogenerated charge carriers, and enhanced photocatalytic properties. Testing the photocatalytic potential of IO-TiO2 with ciprofloxacin in water under UV-B light achieved up to 70% degradation in 150 min, with a degradation rate of 0.0063 min−1. The nanocomposite was magnetically removed after photocatalysis and successfully regenerated for reuse. These findings highlight the potential of IO-TiO2 nanocomposites for reducing ciprofloxacin levels in wastewater, helping curb antibiotic resistance. Ključne besede: photocatalytic degradation, magnetic iron oxide-TiO2 nanocomposites, hetero-agglomeration, multifunctionality, antibiotic ciprofloxacin, antimicrobial resistance Objavljeno v RUNG: 09.09.2024; Ogledov: 526; Prenosov: 6 Celotno besedilo (14,48 MB) Gradivo ima več datotek! Več... |
2. Utilizing structurally disordered AlMg-oxide phase in Cu/ZnO catalyst for efficient ▫$CO_2$▫ hydrogenation to methanolAndraž Mavrič, Gregor Žerjav, Blaž Belec, Matevž Roškarič, Matjaž Finšgar, Albin Pintar, Matjaž Valant, 2023, objavljeni povzetek znanstvenega prispevka na konferenci Ključne besede: carbon dioxide, methanol, catalysis Objavljeno v RUNG: 15.09.2023; Ogledov: 2057; Prenosov: 7 Celotno besedilo (99,69 KB) Gradivo ima več datotek! Več... |
3. Winning combination of Cu and Fe oxide clusters with an alumina support for low-temperature catalytic oxidation of volatile organic compoundsTadej Žumbar, Iztok Arčon, Petar Djinović, Giuliana Aquilanti, Gregor Žerjav, Albin Pintar, Alenka Ristić, Goran Dražić, Janez Volavšek, Gregor Mali, Margarita Popova, Nataša Zabukovec Logar, Nataša Novak Tušar, 2023, izvirni znanstveni članek Opis: A γ-alumina support functionalized with transition metals is one of the most widely used industrial catalysts for the total oxidation of volatile organic compounds (VOCs) as air pollutants at higher temperatures (280−450 °C). By rational design of a
bimetal CuFe-γ-alumina catalyst, synthesized from a dawsonite alumina precursor, the activity in total oxidation of toluene as a model VOC at a lower temperature (200−380
°C) is achieved. A fundamental understanding of the catalyst and the reaction mechanism is elucidated by advanced microscopic and spectroscopic characterizations as well as by temperature-programmed surface techniques. The nature of the metal−support bonding and the optimal abundance between Cu−O−Al and Fe−O−Al species in the catalysts leads to synergistic catalytic activity promoted by small amounts of iron (Fe/Al = 0.005).
The change in the metal oxide−cluster alumina interface is related to the nature of the
surfaces to which the Cu atoms attach. In the most active catalyst, the CuO6 octahedra are
attached to 4 Al atoms, while in the less active catalyst, they are attached to only 3 Al atoms. The oxidation of toluene occurs via the Langmuir−Hinshelwood mechanism. The presented material introduces a prospective family of low-cost and scalable oxidation catalysts with superior efficiency at lower temperatures. Ključne besede: Iron oxide clusters, copper oxide clusters, alumina support, synergistic effect, low-temperature total catalytic oxidation, toluene, Cu, Fe XANES, EXAFS Objavljeno v RUNG: 06.07.2023; Ogledov: 2692; Prenosov: 27 Celotno besedilo (11,05 MB) Gradivo ima več datotek! Več... |
4. Structural disorder of AlMg-oxide phase supporting Cu/ZnO catalyst improves efficiency and selectivity for ▫$CO_2$▫ hydrogenation to methanolAndraž Mavrič, Gregor Žerjav, Blaž Belec, Matevž Roškarič, Matjaž Finšgar, Albin Pintar, Matjaž Valant, 2023, izvirni znanstveni članek Opis: The performance of the Cu/ZnO catalyst system with the AlMg-oxide phase is studied for CO2 hydrogenation to methanol. The catalyst is prepared by thermal treatment of the hydrotalcite phase containing intimately mixed metal cations in the hydroxide form. CuO in the presence of ZnO and disordered AlMg-oxide phase gets easily reduced to Cu during the hydrogenation reaction. Its catalytic activity at relatively low Cu metal content (∼14 at.%) remains stable during 100 hours on stream at 260 °C with constant space-time yield for methanol (∼1.8 gMeOH gcat−1 h−1) and high methanol selectivity (>85 %) The improved performance is attributed to the neutralization of surface acidity, increased number of weak basic sites in the disordered phase, and lower tendency for coke formation. Ključne besede: carbon dioxide hydrogenation, heterogenous catalysis, methanol, reducibility Objavljeno v RUNG: 02.06.2023; Ogledov: 1938; Prenosov: 21 Celotno besedilo (1,12 MB) |