Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 17
First pagePrevious page12Next pageLast page
1.
The distribution of ultrahigh-energy cosmic rays along the supergalactic plane measured at the Pierre Auger Observatory
A. Abdul Halim, P. Abreu, M. Aglietta, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, original scientific article

Abstract: Ultrahigh-energy cosmic rays are known to be mainly of extragalactic origin, and their propagation is limited by energy losses, so their arrival directions are expected to correlate with the large-scale structure of the local Universe. In this work, we investigate the possible presence of intermediate-scale excesses in the flux of the most energetic cosmic rays from the direction of the supergalactic plane region using events with energies above 20 EeV recorded with the surface detector array of the Pierre Auger Observatory up to 2022 December 31, with a total exposure of 135,000 sq. km sr yr. The strongest indication for an excess that we find, with a posttrial significance of 3.1σ, is in the Centaurus region, as in our previous reports, and it extends down to lower energies than previously studied. We do not find any strong hints of excesses from any other region of the supergalactic plane at the same angular scale. In particular, our results do not confirm the reports by the Telescope Array Collaboration of excesses from two regions in the Northern Hemisphere at the edge of the field of view of the Pierre Auger Observatory. With a comparable integrated exposure over these regions, our results there are in good agreement with the expectations from an isotropic distribution.
Keywords: ultra-high-energy cosmic rays, UHECR propagation, large-scale structure, UHECR energy losses, UHECR deflections, supergalactic plane region, Centaurus region, Pierre Auger Observatory, Auger surface detector array
Published in RUNG: 06.05.2025; Views: 516; Downloads: 2
.pdf Full text (2,20 MB)
This document has many files! More...

2.
Improved calibration methods and reconstruction of the underground muon detector of the Pierre Auger Observatory
Joaquín De Jesús, A. Abdul Halim, P. Abreu, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, published scientific conference contribution

Abstract: As part of the upgrade of the Pierre Auger Observatory, known as AugerPrime, the Underground Muon Detector is being deployed in the low-energy extension of the Surface Detector. It comprises an array of 30 m[sup]2 plastic scintillator muon counters, buried 2.3 meters underground near the water-Cherenkov detectors, allowing for direct measurement of the muonic component of air showers in the energy range of 10[sup]16.5 − 10[sup]19 eV. To achieve an extended dynamic range, the detector operates in two modes: the binary mode, which is optimized for low muon densities, and the ADC mode, designed for high muon densities. In this contribution, we present the latest improvements to the calibration procedure of the ADC mode and to the data reconstruction of the binary mode. We assess their performance with simulations.
Keywords: ultra-high-energy cosmic rays (UHECRs), extensive air showers, Pierre Auger Observatory, AugerPrime upgrade, Auger underground muon detector (UMD), muonic air-shower component, detector calibration, data reconstruction
Published in RUNG: 30.04.2025; Views: 648; Downloads: 5
.pdf Full text (991,94 KB)
This document has many files! More...

3.
Amplifying UHECR arrival direction information using mass estimators at the Pierre Auger Observatory
Lorenzo Apollonio, A. Abdul Halim, P. Abreu, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, published scientific conference contribution

Abstract: The origin of Ultra-High-Energy Cosmic Rays (UHECRs) is one of the biggest mysteries in modern astrophysics. Since UHECRs are deflected by Galactic and extragalactic magnetic fields, their arrival directions do not point to their sources. Previous analyses conducted on the arrival directions of high-energy events (E ≥ 32 EeV) recorded by the Surface Detector of the Pierre Auger Observatory have not shown significant anisotropies. The largest excess found in the first 19 years of data - at the 4.0 sigma level - is in the region around Centaurus A, and it is also the driving force of a correlation of UHECR arrival directions with a catalog of Starburst Galaxies, which is at the 3.8 sigma level. Since UHECRs are mostly nuclei, the lightest ones (least charged) are also the least deflected. While the mass of the events can be estimated better using the Fluorescence Detector of the Pierre Auger Observatory, the Surface Detector provides the necessary statistics needed for astrophysical studies. The introduction of novel mass-estimation techniques, such as machine learning models and an algorithm based on air-shower universality, will help identify high-rigidity events in the Surface Detector data of the Pierre Auger Observatory. With this work, we present how event-per-event mass estimators can help enhance the sensitivity in the search for anisotropies in the arrival directions of UHECRs at small and intermediate angular scales using simulations.
Keywords: ultra-high-energy cosmic rays (UHECRs), extensive air showers, Pierre Auger Observatory, UHECR propagation, UHECR arrival directions, UHECR mass composition, Centaurus A radio galaxy, starburst galaxies, air-shower universality
Published in RUNG: 30.04.2025; Views: 546; Downloads: 6
.pdf Full text (2,03 MB)
This document has many files! More...

4.
Measurement of the depth of maximum of air-shower profiles with energies between ▫$10^{18.5} and 10^{20}$▫ eV using the surface detector of the Pierre Auger Observatory and deep learning
A. Abdul Halim, P. Abreu, M. Aglietta, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, original scientific article

Abstract: We report an investigation of the mass composition of cosmic rays with energies from 3 to 100 EeV (1 EeV = 10[sup]18 eV) using the distributions of the depth of shower maximum Xmax. The analysis relies on ∼50,000 events recorded by the surface detector of the Pierre Auger Observatory and a deep-learning-based reconstruction algorithm. Above energies of 5 EeV, the dataset offers a 10-fold increase in statistics with respect to fluorescence measurements at the Observatory. After cross-calibration using the fluorescence detector, this enables the first measurement of the evolution of the mean and the standard deviation of the Xmax distributions up to 100 EeV. Our findings are threefold: (i) The evolution of the mean logarithmic mass toward a heavier composition with increasing energy can be confirmed and is extended to 100 EeV. (ii) The evolution of the fluctuations of Xmax toward a heavier and purer composition with increasing energy can be confirmed with high statistics. We report a rather heavy composition and small fluctuations in Xmax at the highest energies. (iii) We find indications for a characteristic structure beyond a constant change in the mean logarithmic mass, featuring three breaks that are observed in proximity to the ankle, instep, and suppression features in the energy spectrum.
Keywords: ultra-high-energy cosmic rays, UHECRs, extensive air showers, Pierre Auger Observatory, UHECR mass composition, depth of shower maximum, fluorescence detector, surface detector, deep learning
Published in RUNG: 20.01.2025; Views: 929; Downloads: 8
.pdf Full text (2,71 MB)
This document has many files! More...

5.
Large-scale cosmic-ray anisotropies with 19 yr of data from the Pierre Auger Observatory
A. Abdul Halim, P. Abreu, M. Aglietta, Ingo Allekotte, K. Almeida Cheminant, Jon Paul Lundquist, Shima Ujjani Shivashankara, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2024, original scientific article

Abstract: We present results of the measurement of large-scale anisotropies in the arrival directions of ultra–high-energy cosmic rays detected at the Pierre Auger Observatory during 19 yr of operation, prior to AugerPrime, the upgrade of the observatory. The 3D dipole amplitude and direction are reconstructed above 4 EeV in four energy bins. Besides the established dipolar anisotropy in right ascension above 8 EeV, the Fourier amplitude of the 8–16 EeV energy bin is now also above the 5σ discovery level. No time variation of the dipole moment above 8 EeV is found, setting an upper limit to the rate of change of such variations of 0.3% per year at the 95% confidence level. Additionally, the results for the angular power spectrum are shown, demonstrating no other statistically significant multipoles. The results for the equatorial dipole component down to 0.03 EeV are presented, using for the first time a data set obtained with a trigger that has been optimized for lower energies. Finally, model predictions are discussed and compared with observations, based on two source emission scenarios obtained in the combined fit of spectrum and composition above 0.6 EeV.
Keywords: ultra–high-energy cosmic rays, UHECRs, UHECR anisotropies, Pierre Auger Observatory, dipolar anisotropy in right ascension, Fourier amplitude analysis, angular power spectrum, equatorial dipole component, UHECR source emission scenarios
Published in RUNG: 26.11.2024; Views: 1123; Downloads: 7
.pdf Full text (1,16 MB)
This document has many files! More...

6.
Measuring the muon content of inclined air showers using AERA and the particle detector of the Pierre Auger Observatory
P. Abreu, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2023, published scientific conference contribution

Abstract: A first measurement of the muon content of air showers using hybrid measurements combining radio and particle detection is presented. For inclined air showers with zenith angles above 60°, the water-Cherenkov detector (WCD) of the Pierre Auger Observatory performs an almost pure measurement of the muonic component, whereas the Auger Engineering Radio Array (AERA) allows reconstructing the electromagnetic energy independently using the radio emission of the air shower. The analysis of more than six years of AERA data shows a deficit of muons predicted by all current-generation hadronic interaction models for energies between 4 EeV and 20 EeV. This deficit, already observed in previous analyses of Auger, is now confirmed for the first time with radio data. This analysis is limited by low statistics of only 59 high-quality events due to the small area of AERA of 17 km² and the high energy threshold of 4 EeV originating from the WCD reconstruction. With the AugerPrime Radio Detector currently being deployed, this analysis can be extended to the highest energies to allow for in-depth tests of hadronic interaction models with large statistics.
Keywords: Pierre Auger Observatory, ultra-high-energy cosmic rays, extensive air showers, engineering radio array
Published in RUNG: 03.10.2024; Views: 1220; Downloads: 3
.pdf Full text (534,45 KB)
This document has many files! More...

7.
8.
Search for photons above ▫$10^19$▫ eV with the surface detector of the Pierre Auger Observatory
P. Abreu, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2023, original scientific article

Abstract: We use the surface detector of the Pierre Auger Observatory to search for air showers initiated by photons with an energy above 10[sup]19 eV. Photons in the zenith angle range from 30 deg. to 60 deg. can be identified in the overwhelming background of showers initiated by charged cosmic rays through the broader time structure of the signals induced in the water-Cherenkov detectors of the array and the steeper lateral distribution of shower particles reaching ground. Applying the search method to data collected between January 2004 and June 2020, upper limits at 95% CL are set to an E[sup]-2 diffuse flux of ultra-high energy photons above 10[sup]19 eV, 2 × 10[sup]19 eV and 4 × 10[sup]19 eV amounting to 2.11 × 10[sup]-3, 3.12 × 10[sup]-4 and 1.72 × 10[sup]-4 km-2 sr-1 yr-1, respectively. While the sensitivity of the present search around 2 × 10[sup]19 eV approaches expectations of cosmogenic photon fluxes in the case of a pure-proton composition, it is one order of magnitude above those from more realistic mixed-composition models. The inferred limits have also implications for the search of super-heavy dark matter that are discussed and illustrated.
Keywords: ultra-high-energy cosmic rays, UHE photons, Pierre Auger Observatory, extensive air showers, water Cherenkov detectors
Published in RUNG: 18.08.2023; Views: 2411; Downloads: 20
.pdf Full text (2,46 MB)
This document has many files! More...

9.
10.
Search done in 0.03 sec.
Back to top