Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 9 / 9
First pagePrevious page1Next pageLast page
1.
Cosmic ray energy spectrum and mass composition with the TALE fluorescence detector
T. Abu-Zayyad, R. U. Abbasi, Y. Abe, M. Allen, Yasuhiko Arai, R. Arimura, E. Barcikowski, J. W. Belz, Douglas R. Bergman, S. A. Blake, Jon Paul Lundquist, 2023, published scientific conference contribution

Abstract: The Telescope Array (TA) cosmic rays detector located in the State of Utah in the United States is the largest ultra high energy cosmic rays detector in the northern hemisphere. The Telescope Array Low Energy Extension (TALE) fluorescence detector (FD) was added to TA in order to lower the detector's energy threshold, and has succeeded in measuring the cosmic rays energy spectrum down to PeV energies, by making use of the direct Cherenkov light produced by air showers. In this contribution we present the results of a measurement of the cosmic-ray energy spectrum and mass composition using TALE FD data collected over a period of ∼8 years. This contribution provides an update to results on the cosmic-ray energy spectrum and mass composition presented at this conference in 2021. The update includes data collected during 16 additional months of observation and an updated detector simulation sets.
Keywords: Telescope Array, TALE, low energy extension, indirect detection, hybrid detection
Published in RUNG: 09.10.2023; Views: 499; Downloads: 5
.pdf Full text (363,14 KB)
This document has many files! More...

2.
Search for large-scale anisotropy on arrival directions of ultra-high-energy cosmic rays observed with the telescope array experiment
R. U. Abbasi, Mitsuhiro Abe, T. Abu-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, Douglas R. Bergman, S. A. Blake, Jon Paul Lundquist, 2020, original scientific article

Abstract: Motivated by the detection of a significant dipole structure in the arrival directions of ultra-high-energy cosmic rays above 8 EeV reported by the Pierre Auger Observatory (Auger), we search for a large-scale anisotropy using data collected with the surface detector array of the Telescope Array Experiment (TA). With 11 yr of TA data, a dipole structure in a projection of the R.A. is fitted with an amplitude of 3.3% ± 1.9% and a phase of 131° ± 33°. The corresponding 99% confidence-level upper limit on the amplitude is 7.3%. At the current level of statistics, the fitted result is compatible with both an isotropic distribution and the dipole structure reported by Auger.
Keywords: cosmic rays, ultra-high-energy cosmic radiation, cosmic ray sources, cosmic ray showers, cosmic ray detectors, cosmic ray astronomy, extragalactic astronomy
Published in RUNG: 05.02.2021; Views: 2309; Downloads: 0
This document has many files! More...

3.
Evidence for a supergalactic structure of magnetic deflection multiplets of ultra-high-energy cosmic rays
R. U. Abbasi, Mitsuhiro Abe, T. Abu-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, Douglas R. Bergman, S. A. Blake, Jon Paul Lundquist, 2020, original scientific article

Abstract: Evidence for a large-scale supergalactic cosmic-ray multiplet (arrival directions correlated with energy) structure is reported for ultra-high-energy cosmic-ray (UHECR) energies above 1019 eV using 7 years of data from the Telescope Array (TA) surface detector and updated to 10 years. Previous energy–position correlation studies have made assumptions regarding magnetic field shapes and strength, and UHECR composition. Here the assumption tested is that, because the supergalactic plane is a fit to the average matter density of the local large-scale structure, UHECR sources and intervening extragalactic magnetic fields are correlated with this plane. This supergalactic deflection hypothesis is tested by the entire field-of-view (FOV) behavior of the strength of intermediate-scale energy–angle correlations. These multiplets are measured in spherical cap section bins (wedges) of the FOV to account for coherent and random magnetic fields. The structure found is consistent with supergalactic deflection, the previously published energy spectrum anisotropy results of the TA (the Hotspot and Coldspot), and toy-model simulations of a supergalactic magnetic sheet. The seven year data posttrial significance of this supergalactic structure of multiplets appearing by chance, on an isotropic sky, is found by Monte Carlo simulation to be 4.2σ. The 10 years of data posttrial significance is 4.1σ. Furthermore, the starburst galaxy M82 is shown to be a possible source of the TA Hotspot, and an estimate of the supergalactic magnetic field using UHECR measurements is presented.
Keywords: extragalactic magnetic fields, ultra-high-energy cosmic radiation, cosmic rays, high energy astrophysics, astrophysical magnetism, cosmic ray astronomy, cosmic ray sources
Published in RUNG: 05.02.2021; Views: 2416; Downloads: 126
URL Link to full text
This document has many files! More...

4.
Measurement of the proton-air cross section with Telescope Array's Black Rock Mesa and Long Ridge fluorescence detectors, and surface array in hybrid mode
R. U. Abbasi, Mitsuhiro Abe, T. Abu-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, Douglas R. Bergman, S. A. Blake, Jon Paul Lundquist, 2020, original scientific article

Abstract: Ultra high energy cosmic rays provide the highest known energy source in the universe to measure proton cross sections. Though conditions for collecting such data are less controlled than an accelerator environment, current generation cosmic ray observatories have large enough exposures to collect significant statistics for a reliable measurement for energies above what can be attained in the lab. Cosmic ray measurements of cross section use atmospheric calorimetry to measure depth of air shower maximum (Xmax), which is related to the primary particle’s energy and mass. The tail of the Xmax distribution is assumed to be dominated by showers generated by protons, allowing measurement of the inelastic proton-air cross section. In this work the proton-air inelastic cross section measurement, σ_inel_p−air, using data observed by Telescope Array’s Black Rock Mesa and Long Ridge fluorescence detectors and surface detector array in hybrid mode is presented. σ_inel_p−air is observed to be 520.1 ± 35.8 [Stat.] +25.0 −40 [Sys.] mb at √s = 73 TeV. The total proton-proton cross section is subsequently inferred from Glauber formalism and is found to be σ_tot_pp = 139.4 +23.4−21.3[Stat.] +15.0−24.0[Sys.] mb.
Keywords: cosmic rays, astroparticles, proton-air cross section
Published in RUNG: 04.02.2021; Views: 2274; Downloads: 0
This document has many files! More...

5.
Search for ultra-high-energy neutrinos with the Telescope Array surface detector
R. U. Abbasi, Mitsuhiro Abe, T. Abu-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, Douglas R. Bergman, S. A. Blake, Jon Paul Lundquist, 2020, original scientific article

Abstract: We present an upper limit on the flux of ultra-high-energy down-going neutrinos for E > 10^18 eV derived with the nine years of data collected by the Telescope Array surface detector (05-11-2008– 05-10-2017). The method is based on the multivariate analysis technique, so-called Boosted Decision Trees (BDT). Proton-neutrino classifier is built upon 16 observables related to both the properties of the shower front and the lateral distribution function.
Keywords: neutrinos, pattern recognition, UHECR, cosmic rays
Published in RUNG: 29.04.2020; Views: 2869; Downloads: 76
URL Link to full text
This document has many files! More...

6.
Real-time multi-marker measurement of organic compounds in human breath: Towards fingerprinting breath
Iain R. White, Kerry A Willis, Christopher Whyte, Rebecca Cordell, Robert S Blake, Andrew J Wardlaw, 2013, original scientific article

Abstract: The prospects for exploiting proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS) in medical diagnostics are illustrated through a series of case studies. Measurements of acetone levels in the breath of 68 healthy people are presented along with a longitudinal study of a single person over a period of 1 month. The median acetone concentration across the population was 484 ppbV with a geometric standard deviation (GSD) of 1.6, whilst the average GSD during the single subject longtitudinal study was 1.5. An additional case study is presented which highlights the potential of PTR-ToF-MS in pharmacokinetic studies, based upon the analysis of online breath samples of a person following the consumption of ethanol. PTR-ToF-MS comes into its own when information across a wide mass range is required, particularly when such information must be gathered in a short time during a breathing cycle. To illustrate this property, multicomponent breath analysis in a small study of cystic fibrosis patients is detailed, which provides tentative evidence that online PTR-ToF-MS analysis of tidal breath can distinguish between active infection and non-infected patients.
Keywords: Volatile Organic Compounds, breath, proton transfer reaction mass spectrometry, Cystic Fibrosis
Published in RUNG: 22.07.2019; Views: 3231; Downloads: 0
This document has many files! More...

7.
Metabolite profiling of the ripening of Mangoes Mangifera indica L. cv. ‘Tommy Atkins’ by real-time measurement of volatile organic compounds
Iain R. White, Robert S Blake, Andrew J Taylor, Paul S Monks, 2016, original scientific article

Abstract: Real-time profiling of mango ripening based on proton transfer reaction-time of flight-mass spectrometry (PTR–ToF–MS) of small molecular weight volatile organic compounds (VOCs), is demonstrated using headspace measurements of ‘Tommy Atkins’ mangoes. VOC metabolites produced during the ripening process were sampled directly, which enabled simultaneous and rapid detection of a wide range of compounds. Headspace measurements of ‘Keitt’ mangoes were also conducted for comparison. A principle component analysis of the results indicated that several mass channels were not only key to the ripening process but could also be used to distinguish between mango cultivars. The identities of 22 of these channels, tentatively speciated using contemporaneous GC–MS measurements of sorbent tubes, are rationalized through examination of the biochemical pathways that produce volatile flavour components. Results are discussed with relevance to the potential of headspace analysers and electronic noses in future fruit ripening and quality studies.
Keywords: Mangifera indica, Tommy Atkins, PTR–ToF–MS, VOCs, Ripening, Mango
Published in RUNG: 18.07.2019; Views: 2847; Downloads: 0
This document has many files! More...

8.
Observations of the release of non-methane hydrocarbons from fractured shale
Roberto Sommariva, Robert S Blake, Robert J Cuss, Rebecca L Cordell, Jon F Harrington, Iain R. White, Paul S Monks, 2014, original scientific article

Abstract: The organic content of shale has become of commercial interest as a source of hydrocarbons, owing to the development of hydraulic fracturing ("fracking"). While the main focus is on the extraction of methane, shale also contains significant amounts of non-methane hydrocarbons (NMHCs). We describe the first real-time observations of the release of NMHCs from a fractured shale. Samples from the Bowland-Hodder formation (England) were analyzed under different conditions using mass spectrometry, with the objective of understanding the dynamic process of gas release upon fracturing of the shale. A wide range of NMHCs (alkanes, cycloalkanes, aromatics, and bicyclic hydrocarbons) are released at parts per million or parts per billion level with temperature- and humidity-dependent release rates, which can be rationalized in terms of the physicochemical characteristics of different hydrocarbon classes. Our results indicate that higher energy inputs (i.e., temperatures) significantly increase the amount of NMHCs released from shale, while humidity tends to suppress it; additionally, a large fraction of the gas is released within the first hour after the shale has been fractured. These findings suggest that other hydrocarbons of commercial interest may be extracted from shale and open the possibility to optimize the "fracking" process, improving gas yields and reducing environmental impacts.
Keywords: Environmental impact, Hydraulic fracturing, Mass spectrometry
Published in RUNG: 18.07.2019; Views: 2884; Downloads: 0
This document has many files! More...

9.
Increased sensitivity in proton transfer reaction mass spectrometry by incorporation of a radio frequency ion funnel
Shane Barber, Robert S Blake, Iain R. White, Paul S Monks, Fraser Reich, Stephen Mullock, Andrew M Ellis, 2012, original scientific article

Abstract: A drift tube capable of simultaneously functioning as an ion funnel is demonstrated in proton transfer reaction mass spectrometry (PTR-MS) for the first time. The ion funnel enables a much higher proportion of ions to exit the drift tube and enter the mass spectrometer than would otherwise be the case. An increase in the detection sensitivity for volatile organic compounds of between 1 and 2 orders of magnitude is delivered, as demonstrated using several compounds. Other aspects of analytical performance explored in this study include the effective E/N (ratio of electric field to number density of the gas) and dynamic range over which the drift tube is operated. The dual-purpose drift tube/ion funnel can be coupled to various types of mass spectrometers to increase the detection sensitivity and may therefore offer considerable benefits in PTR-MS work.
Keywords: Analytical performance, Detection sensitivity, Drift tube, Dynamic range, Ion funnels, Proton-transfer reaction mass spectrometry, Volatile organic compounds
Published in RUNG: 18.07.2019; Views: 2782; Downloads: 0
This document has many files! More...

Search done in 0.05 sec.
Back to top