1. Scrutinizing FR 0 radio galaxies as ultra-high-energy cosmic ray source candidatesAnita Reimer, Lukas Merten, Margot Boughelilba, Paolo Da Vela, Serguei Vorobiov, Fabrizio Tavecchio, Giacomo Bonnoli, Jon Paul Lundquist, Chiara Righi, 2021, izvirni znanstveni članek Opis: Fanaroff-Riley (FR) 0 radio galaxies compose a new class of radio galaxies, which are usually weaker but much more numerous than the well-established class of FR 1 and FR 2 galaxies. The latter classes have been proposed as sources of the ultra-high-energy cosmic rays (UHECRs) with energies reaching up to eV. Based on this conjecture, the possibility of UHECR acceleration and survival in an FR 0 source environment is examined in this work.
In doing so, an average spectral energy distribution (SED) based on data from the FR 0 catalog (FR0CAT) is compiled. The resulting photon fields are used as targets for UHECRs, which suffer from electromagnetic pair production, photo-disintegration, photo-meson production losses, and synchrotron radiation. Multiple mechanisms are discussed to assess the UHECR acceleration probability, including Fermi-I order and gradual shear accelerations, and particle escape from the source region.
This work shows that in a hybrid scenario, combining Fermi and shear accelerations, FR 0 galaxies can contribute to the observed UHECR flux, as long as where shear acceleration starts to dominate over escape. Even in less optimistic scenarios, FR 0s can be expected to contribute to the cosmic-ray flux between the knee and the ankle. Our results are relatively robust with respect to the realized magnetic turbulence model and the speed of the accelerating shocks. Najdeno v: osebi Ključne besede: acceleration of particles, nonthermal radiation mechanisms, jets, active galaxies, cosmic rays Objavljeno: 05.02.2021; Ogledov: 1805; Prenosov: 0
Polno besedilo (4,15 MB) Gradivo ima več datotek! Več...
|
2. Extrapolating FR-0 radio galaxy source properties from propagation of multi-messenger ultra-high energy cosmic raysChiara Righi, Giacomo Bonnoli, Fabrizio Tavecchio, Paolo Da Vela, Anita Reimer, Margot Boughelilba, Serguei Vorobiov, Lukas Merten, Jon Paul Lundquist, 2021, objavljeni znanstveni prispevek na konferenci Opis: Recently, it has been shown that relatively low luminosity Fanaroff-Riley type 0 (FR-0) radio galaxies are a good candidate source class for a predominant fraction of cosmic rays (CR) accelerated to ultra-high energies (UHE, E>10[sup]18 eV). FR-0s can potentially provide a significant fraction
of the UHECR energy density as they are much more numerous in the local universe than more energetic radio galaxies such as FR-1s or FR-2s (up to a factor of ∼5 with z≤0.05 compared to
FR-1s).
In the present work, UHECR mass composition and energy spectra at the FR-0 sources are estimated by fitting simulation results to the published Pierre Auger Observatory data. This fitting is done using a simulated isotropic sky distribution extrapolated from the measured FR-0 galaxy properties and propagating CRs in plausible extragalactic magnetic field configurations using the CRPropa3 framework. In addition, we present estimates of the fluxes of secondary photons and neutrinos created in UHECR interactions with cosmic photon backgrounds during
CR propagation. With this approach, we aim to investigate the properties of the sources with the help of observational multi-messenger data. Najdeno v: osebi Ključne besede: jetted active galaxies, FR-0 radiogalaxies, ultra-high energy cosmic rays, extragalactic magnetic fields, UHECR propagation, UHECR interactions, cosmogenic photons, cosmogenic neutrinos Objavljeno: 16.08.2021; Ogledov: 1186; Prenosov: 0
Polno besedilo (2,04 MB) |
3. FR-0 jetted active galaxiesChiara Righi, Jon Paul Lundquist, Giacomo Bonnoli, Fabrizio Tavecchio, Serguei Vorobiov, Paolo Da Vela, Anita Reimer, Margot Boughelilba, Lukas Merten, 2021, objavljeni znanstveni prispevek na konferenci Opis: Fanaroff-Riley (FR) 0 radio galaxies form a low-luminosity extension to the well-established ultra-high-energy cosmic-ray (UHECR) candidate accelerators FR-1 and FR-2 galaxies. Their much higher number density — up to a factor five times more numerous than FR-1 with z ≤ 0.05 — makes them good candidate sources for an isotropic contribution to the observed UHECR flux.
Here, the acceleration and survival of UHECR in prevailing conditions of the FR-0 environment are discussed.
First, an average spectral energy distribution (SED) is compiled based on the FR0CAT. These photon fields, composed of a jet and a host galaxy component, form a minimal target photon field for the UHECR, which will suffer from electromagnetic pair production, photo-disintegration, photo-meson production losses, and synchrotron radiation. The two most promising acceleration scenarios based on Fermi-I order and gradual shear acceleration are discussed as well as different
escape scenarios.
When an efficient acceleration mechanism precedes gradual shear acceleration, e.g., Fermi-I orothers, FR-0 galaxies are likely UHECR accelerators. Gradual shear acceleration requires a jet
Lorentz factor of Gamma>1.6, to be faster than the corresponding escape. In less optimistic models, a contribution to the cosmic-ray flux between the knee and ankle is expected to be relatively independent of the realized turbulence and acceleration. Najdeno v: osebi Ključne besede: jetted active galaxies, FR-0 radiogalaxies, ultra-high energy cosmic rays, cosmic ray acceleration, cosmic ray energy losses Objavljeno: 16.08.2021; Ogledov: 1139; Prenosov: 0
Polno besedilo (1,13 MB) |