Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


141 - 150 / 215
Na začetekNa prejšnjo stran11121314151617181920Na naslednjo stranNa konec
141.
Extrapolating FR-0 radio galaxy source properties from propagation of multi-messenger ultra-high energy cosmic rays
Jon Paul Lundquist, Lukas Merten, Serguei Vorobiov, Margot Boughelilba, Anita Reimer, Paolo Da Vela, Fabrizio Tavecchio, Giacomo Bonnoli, Chiara Righi, 2021, objavljeni znanstveni prispevek na konferenci

Opis: Recently, it has been shown that relatively low luminosity Fanaroff-Riley type 0 (FR-0) radio galaxies are a good candidate source class for a predominant fraction of cosmic rays (CR) accelerated to ultra-high energies (UHE, E>10[sup]18 eV). FR-0s can potentially provide a significant fraction of the UHECR energy density as they are much more numerous in the local universe than more energetic radio galaxies such as FR-1s or FR-2s (up to a factor of ∼5 with z≤0.05 compared to FR-1s). In the present work, UHECR mass composition and energy spectra at the FR-0 sources are estimated by fitting simulation results to the published Pierre Auger Observatory data. This fitting is done using a simulated isotropic sky distribution extrapolated from the measured FR-0 galaxy properties and propagating CRs in plausible extragalactic magnetic field configurations using the CRPropa3 framework. In addition, we present estimates of the fluxes of secondary photons and neutrinos created in UHECR interactions with cosmic photon backgrounds during CR propagation. With this approach, we aim to investigate the properties of the sources with the help of observational multi-messenger data.
Ključne besede: jetted active galaxies, FR-0 radiogalaxies, ultra-high energy cosmic rays, extragalactic magnetic fields, UHECR propagation, UHECR interactions, cosmogenic photons, cosmogenic neutrinos
Objavljeno v RUNG: 16.08.2021; Ogledov: 1973; Prenosov: 3
.pdf Celotno besedilo (2,04 MB)

142.
143.
144.
145.
146.
147.
Calibration of the underground muon detector of the Pierre Auger Observatory
A. Aab, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Marta Trini, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2021, izvirni znanstveni članek

Opis: To obtain direct measurements of the muon content of extensive air showers with energy above 10[sup]16.5 eV, the Pierre Auger Observatory is currently being equipped with an underground muon detector (UMD), consisting of 219 10 m[sup]2-modules, each segmented into 64 scintillators coupled to silicon photomultipliers (SiPMs). Direct access to the shower muon content allows for the study of both of the composition of primary cosmic rays and of high-energy hadronic interactions in the forward direction. As the muon density can vary between tens of muons per m[sup]2 close to the intersection of the shower axis with the ground to much less than one per m[sup]2 when far away, the necessary broad dynamic range is achieved by the simultaneous implementation of two acquisition modes in the read-out electronics: the binary mode, tuned to count single muons, and the ADC mode, suited to measure a high number of them. In this work, we present the end-to-end calibration of the muon detector modules: first, the SiPMs are calibrated by means of the binary channel, and then, the ADC channel is calibrated using atmospheric muons, detected in parallel to the shower data acquisition. The laboratory and field measurements performed to develop the implementation of the full calibration chain of both binary and ADC channels are presented and discussed. The calibration procedure is reliable to work with the high amount of channels in the UMD, which will be operated continuously, in changing environmental conditions, for several years.
Ključne besede: ultra-high energy cosmic rays, extensive air showers (EAS), EAS muonic component, Pierre Auger Observatory, underground muon detector, detector calibration
Objavljeno v RUNG: 14.04.2021; Ogledov: 2789; Prenosov: 139
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

148.
e/p separation study using the ISS-CREAM top and bottom counting detectors
S. C. Kang, Y. Amarea, D. Angelaszek, N. Anthony, G. H. Choi, M. Chung, M. Copley, L. Derome, L. Eraud, C. Falana, Jon Paul Lundquist, 2019, objavljeni znanstveni prispevek na konferenci

Opis: Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) is an experiment for studying the origin, acceleration, and propagation mechanisms of high-energy cosmic rays. The ISS-CREAM instrument was launched on the 14th of August 2017 to the ISS aboard the SpaceX-12 Dragon spacecraft. The Top and Bottom Counting Detectors (TCD/BCD) are parts of the ISS-CREAM instrument and designed for studying electron and gamma-ray physics. The TCD/BCD each consist of an array of 20 × 20 photodiodes on a plastic scintillator. The TCD/BCD can separate electrons from protons by using the difference between the shapes of electromagnetic and hadronic showers in the high energy region. The Boosted Decision Tree (BDT) method, which is a deep learning method, is used in this separation study. We will present results of the electron/proton separation study and rejection power in various energy ranges.
Ključne besede: instrumentations, high energy cosmic rays, particle detectors, composition
Objavljeno v RUNG: 08.02.2021; Ogledov: 2289; Prenosov: 0
Gradivo ima več datotek! Več...

149.
On-orbit performance of the ISS-CREAM calorimeter
K. C. Kim, Y. Amarea, D. Angelaszek, N. Anthony, G. H. Choi, M. Chung, M. Copley, L. Derome, L. Eraud, C. Falana, Jon Paul Lundquist, 2019, objavljeni znanstveni prispevek na konferenci

Opis: Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) experiment is designed to study the composition and energy spectra of cosmic-ray particles from 10^12 to 10^15 eV. ISS-CREAM was launched and deployed to the ISS in August 2017. The ISS-CREAM payload employs a Silicon Charge Detector for charge measurements, Top and Bottom Counting Detector for electron-hadron separation and a low-energy trigger, a Boronated Scintillator Detector for additional electron-hadron separation, and a Calorimeter (CAL) for en-ergy measurements and a high-energy trigger. The CAL is constructed of 20 layers of tungsten plates interleaved with scintillating fiber ribbons read out by hybrid-photodiodes (HPDs) and densified carbon targets. Each CAL layer is made of 3.5 mm (1 X_0) thick tungsten plates alter-nating with fifty 0.5 mm thick and 1 cm wide scintillating fiber ribbons. Consecutive layers of fiber ribbons are installed orthogonal to each other. Energy deposition in the CAL determines the particle energy and provides tracking information to determine which segment(s) of the charge detectors to use for the charge measurement. Tracking for showers is accomplished by extrapolating each shower axis back to the charge detectors. The performance of the ISS-CREAM CAL during flight is presented.
Ključne besede: instrumentations, high energy cosmic rays, particle detectors
Objavljeno v RUNG: 08.02.2021; Ogledov: 2477; Prenosov: 0
Gradivo ima več datotek! Več...

150.
ISS-CREAM flight operation
K. C. Kim, Y. Amarea, D. Angelaszek, N. Anthony, G. H. Choi, M. Chung, M. Copley, L. Derome, L. Eraud, C. Falana, Jon Paul Lundquist, 2019, objavljeni znanstveni prispevek na konferenci

Opis: The Cosmic Ray Energetics And Mass experiment for the International Space Station (ISS-CREAM) is designed and built to measure the elemental energy spectra of cosmic-ray particles (1 ≤ Z ≤ 26) and electrons. It measures the energy of incident cosmic rays from 10^12 to 10^15 eV. ISS-CREAM was launched and deployed to the ISS in August 2017. The Science Operations Center (SOC) at the University of Maryland has been operating the payload on the International Space Station (ISS) in coordination with the Payload Operations Integration Center (POIC) at NASA’s Marshall Space Flight Center. The SOC has been responsible for sending commands to and receiving data from the Science Flight Computer (SFC) on board ISS-CREAM. The ISS-CREAM data taking program interfaces with the POIC using the Telescience Resources Kit through the Software Toolkit for Ethernet Lab-Like Architecture developed by the Boeing Company. The command uplink and data downlink have been through the Track-ing and Data Relay Satellite System. We present the ISS-CREAM flight operations including ISS communications, SFC performance, etc.
Ključne besede: instrumentations, high energy cosmic rays, particle detectors
Objavljeno v RUNG: 08.02.2021; Ogledov: 2369; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.07 sek.
Na vrh