Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


21 - 30 / 193
First pagePrevious page12345678910Next pageLast page
21.
Composites of transition metal dichalcogenides and topological insulators as a new class of catalytic materials
Jelena Rmuš, Blaž Belec, Igor Milanović, Mattia Fanetti, Sandra Gardonio, Matjaž Valant, Sandra V. Kurko, 2022, published scientific conference contribution abstract

Keywords: composites, topological insulators
Published in RUNG: 13.02.2023; Views: 962; Downloads: 0
This document has many files! More...

22.
23.
24.
Unravelling the electronic properties of Bi2Se3-Bi2S3 quasi binary system
Matjaž Valant, Sandra Gardonio, Rini Benher Zipporah, Mattia Fanetti, 2022, published scientific conference contribution abstract

Keywords: topološki izolatorji, selenidi, elektronske lastnosti
Published in RUNG: 30.11.2022; Views: 1143; Downloads: 0
This document has many files! More...

25.
Plasma-enhanced atomic layer deposition of amorphous Ga2O3 for solar-blind photodetection
Ze-Yu Fan, Min-Ji Yang, Bo-Yu Fan, Andraž Mavrič, Nadiia Pastukhova, Matjaž Valant, Bo-Lin Li, Kuang Feng, Dong-Liang Liu, Guang-Wei Deng, Qiang Zhou, Yan-Bo Li, 2022, original scientific article

Abstract: Wide-bandgap gallium oxide (Ga2O3) is one of the most promising semiconductor materials for solar-blind (200 nm–280 nm) photodetection. In its amorphous form, a-Ga2O3 maintains its intrinsic optoelectronic properties while can be prepared at a low growth temperature, thus is compatible with Si integrated circuits (ICs) technology. Herein, the a-Ga2O3 film is directly deposited on pre-fabricated Au interdigital electrodes by plasma enhanced atomic layer deposition (PE-ALD) at a growth temperature of 250 °C. The stoichiometric a-Ga2O3 thin film with a low defect density is achieved owing to the mild PE-ALD condition. As a result, the fabricated Au/a-Ga2O3/Au photodetector shows a fast time response, high responsivity, and excellent wavelength selectivity for solar-blind photodetection. Furthermore, an ultra-thin MgO layer is deposited by PE-ALD to passivate the Au/a-Ga2O3/Au interface, resulting in the responsivity of 788 A/W (under 254 nm at 10 V), a 250-nm-to-400-nm rejection ratio of 9.2×103, and the rise time and the decay time of 32 ms and 6 ms, respectively. These results demonstrate that the a-Ga2O3 film grown by PE-ALD is a promising candidate for high-performance solar-blind photodetection and potentially can be integrated with Si ICs for commercial production.
Keywords: Amorphous gallium oxide, Passivation layer, Plasma enhanced atomic layer deposition, Responsivity, Solar-blind photodetector
Published in RUNG: 25.10.2022; Views: 1095; Downloads: 0
This document has many files! More...

26.
27.
Helix-coil theory to process experimental data for short polypeptides in solvent
Knarik Yeritsyan, Matjaž Valant, Artem Badasyan, 2022, published scientific conference contribution abstract

Keywords: Zimm-Bragg model, helix-coil transition, thermal unfolding, chain length
Published in RUNG: 10.10.2022; Views: 1091; Downloads: 1
This document has many files! More...

28.
Explotation of Localized Surface Plasmon Resonance for Detection of nanoparticle's topological surface states
Blaž Belec, Mattia Fanetti, Sandra Gardonio, Matjaž Valant, 2022, published scientific conference contribution abstract

Keywords: topological insulator, bismuth selenide
Published in RUNG: 27.09.2022; Views: 1186; Downloads: 0
This document has many files! More...

29.
Correlation between FeCl2 electrolyte conductivity and electrolysis efficiency
Uroš Luin, Matjaž Valant, Iztok Arčon, 2022, published scientific conference contribution abstract

Abstract: The electrolysis efficiency is an important aspect of the Power-to-Solid energy storage technology (EST) based on the iron chloride electrochemical cycle [1]. This cycle employs an aqueous FeCl2 catholyte solution for the electro-reduction of iron. The metal iron deposits on the cathode. The energy is stored as a difference in the redox potential of iron species. Hydrogen, as an energy carrier, is released on demand over a fully controlled hydrogen evolution reaction between metallic Fe0 and HCl (aq) [1]. Due to these characteristics, the cycle is suitable for long-term high-capacity and high-power energy storage. In a previous work [2] we revealed that the electrolyte conductivity linearly increases with temperature. Contrary, the correlation between the electrolyte concentration and efficiency is not so straightforward. Unexpectedly small efficiency variations were found between 1 and 2.5 mol dm-3 FeCl2 (aq) followed by an abrupt efficiency drop at higher concentrations. To explain the behavior of the observed trends and elucidate the role of FeCl2 (aq) complex ionic species we performed in situ X-ray absorption studies. We made a dedicated experimental setup, consisting of a tubular oven and PMMA liquid absorption cell, and performed the measurements at the DESY synchrotron P65 beamline. The XAS investigation covered XANES and EXAFS analyses of FeCl2 (aq) at different concentrations (1 - 4 molL-1) and temperatures (25 - 80 °C). We found that at low temperature and low FeCl2 concentration the octahedral first coordination sphere around Fe is occupied by one Cl ion at a distance of 2.33 (±0.02) Å and five water molecules at a distance of 2.095 (±0.005) Å [3]. The structure of the ionic complex gradually changes with an increase in temperature and/or concentration. The apical water molecule is substituted by a chlorine ion to yield a neutral Fe[Cl2(H2O)4]0. The transition from the single charged Fe[Cl(H2O)5]+ to the neutral Fe[Cl2(H2O)4]0 causes a significant drop in the solution conductivity, which well correlates with the existing conductivity models [3]. [1] M. Valant, “Procedure for electric energy storage in solid matter. United States Patent and Trademark Office. Patent No. US20200308715,” Patent No. US20200308715, 2021. [2] U. Luin and M. Valant, “Electrolysis energy efficiency of highly concentrated FeCl2 solutions for power-to-solid energy storage technology,” J. Solid State Electrochem., vol. 26, no. 4, pp. 929–938, Apr. 2022, doi: 10.1007/S10008-022-05132-Y. [3] U. Luin, I. Arčon, and M. Valant, “Structure and Population of Complex Ionic Species in FeCl2 Aqueous Solution by X-ray Absorption Spectroscopy,” Molecules, vol. 27, no. 3, 2022, doi: 10.3390/molecules27030642.
Keywords: Iron chloride electrochemical cycle, Power-to-Solid energy storage, XANES, EXAFS, electrical conductivity, electrolyte complex ionic species structure and population
Published in RUNG: 26.09.2022; Views: 1490; Downloads: (1 vote)
This document has many files! More...

30.
Search done in 0.07 sec.
Back to top