Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


21 - 30 / 38
First pagePrevious page1234Next pageLast page
21.
Deposition of porphyrin thin films by electrophoresis
Andraž Mavrič, Tina Škorjanc, Mads Nybo Sørensen, Changzhu Wu, Matjaž Valant, 2022, published scientific conference contribution abstract

Abstract: Porphyrins are heterocyclic macrocycles consisting of interconnected pyrrole subunits acting as ligands for metal ions. Metallised metalloporphyrins naturally occur as cofactors in a series of enzymes, acting as active sites for biochemical transformations. Mimicking nature, a variety of functionalized porphyrins have been prepared for different catalytic purposes [1]. These organometallic complexes have isolated metal centers in tailored coordination environments to drive catalytic reactions in homogeneous solutions. The activity and selectivity of isolated metal ions acting as single-atom catalysts are defined by the coordination environment. Depending on the porphyrin structure, the solubility of these macrocycles and their processability in solutions can be altered. While such adjustments to the structure might ease the processability, the catalytic properties might also be altered. Because homogenous catalysis presents challenges with the separation and recyclability of the catalyst, it is common to fix metalloporphyrins into molecular organic frameworks or deposit them onto a substrate. Commonly used deposition techniques face several challenges. For instance, thermal evaporation can cause partial or complete degradation of some thermally-labile functional groups attached to the porphyrins. Similarly, spin coating commonly results in an uneven thickness and uneven morphology of the deposited films. To overcome these difficulties, we present an alternative method for the deposition of porphyrin thin films that is suitable for a wide range of functionalized porphyrins. The electrophoresis can force the molecules to deposit on a conductive substrate such as a metal foil or transparent conductive oxide by applying the electric field generated by a DC power supply. The film thickness can be precisely controlled by changing the voltage value, deposition time, or solution concentration using even a small amount of material [2, 3]. Six different functionalized porphyrin molecules have been successfully deposited onto the copper foil substrate by optimizing key parameters, including applied electric field, the duration of electrophoresis, the size of the copper electrodes, and solvent polarity. To demonstrate the generality of our approach, we have selected a broad range of porphyrins that incorporate the following functional groups: phenyl rings, carboxylic acids, pyridyl rings, methyl benzyl ethers, methyl benzoyl esters, and cobalt (II) metalized macrocycle. The impact of this study extends above catalysis to various applications of porphyrins thin films on conductive substrates such as optoelectronics and sensors.
Keywords: porphyrin, thin film, electrophoresis
Published in RUNG: 26.09.2022; Views: 1071; Downloads: 0
This document has many files! More...

22.
Coevaporation of doped inorganic carrier-selective layers for high-performance inverted planar perovskite solar cells
Jiexuan Jiang, Andraž Mavrič, Nadiia Pastukhova, Matjaž Valant, Qiugui Zeng, Zeyu Fan, Beibei Zhang, Yanbo Li, 2022, original scientific article

Abstract: Inorganic carrier selective layers (CSLs), whose conductivity can be effectively tuned by doping, offer low-cost and stable alternatives for their organic counterparts in perovskite solar cells (PSCs). Herein, we employ a dual-source electron-beam co-evaporation method for the controlled deposition of copper-doped nickel oxide (Cu:NiO) and tungsten-doped niobium oxide (W:Nb2O5) as hole and electron transport layers, respectively. The mechanisms for the improved conductivity using dopants are investigated. Owing to the improved conductivity and optimized band alignment of the doped CSLs, the all-inorganic-CSLs-based PSCs achieves a maximum power conversion efficiency (PCE) of 20.47%. Furthermore, a thin titanium buffer layer is inserted between the W:Nb2O5 and the silver electrode to prevent the halide ingression and improve band alignment. This leads to a further improvement of PCE to 21.32% and a long-term stability (1200 h) after encapsulation. Finally, the large-scale applicability of the doped CSLs by co-evaporation is demonstrated for the device with 1 cm2 area showing a PCE of over 19%. Our results demonstrate the potential application of the co-evaporated CSLs with controlled doping in PSCs for commercialization.
Keywords: carrier selective layers, Cu-doped nickel oxide, electron-beam evaporation, perovskite solar cells, W-doped niobium oxide
Published in RUNG: 17.03.2022; Views: 1762; Downloads: 121
.pdf Full text (1,38 MB)
This document has many files! More...

23.
24.
25.
26.
Atomic layer deposition for the photoelectrochemical applications
Nadiia Pastukhova, Andraž Mavrič, Yanbo Li, 2021, review article

Abstract: Substantial progress has been made in the photoelectrochemical (PEC) field to understand the photoelectrode behavior, semiconductor‐electrolyte interface, and photocorrosion, enabling new photoelectrode architectures with higher photocurrent, reduced photovoltage losses, and longer lifetime. Nevertheless, for practical PEC applications additional efforts are still needed to optimize all components of the photoelectrodes, including the light absorbing semiconductors, the layers for charge extraction, charge transfer, corrosion protection, and catalysis. In this regard, atomic layer deposition (ALD) offers new opportunities due to the monolayer‐by‐monolayer deposition approach, allowing preparation of conformal films with precisely controlled thickness and composition. As the ALD instruments are becoming widely accessible, this review aims to make an overview of the applications for photoelectrodes fabrication. The deposition of semiconductors onto flat and nano‐textured substrates, the deposition of ultrathin interlayers to ease charge transport by energy band alignment and surface states passivation, the deposition of corrosion protection layers, and finally, the possibilities for high catalyst dispersion is presented.
Keywords: atomic layer deposition, charge recombination, charge transfer, photocorrosion, photoelectrochemical water splitting
Published in RUNG: 25.02.2021; Views: 2212; Downloads: 139
URL Link to full text
This document has many files! More...

27.
28.
Morphous aluminium oxide : a promising candidate for a photoanode protection layer
Andraž Mavrič, Chunhua Cui, Matjaž Valant, 2019, published scientific conference contribution abstract

Keywords: aluminium oxide, metal oxides, protection layers
Published in RUNG: 10.02.2020; Views: 3385; Downloads: 0
This document has many files! More...

29.
Amorphous alumina nanocomposite : the effect of surface, interface and bulk stress
Andraž Mavrič, Chunhua Cui, Matjaž Valant, 2019, published scientific conference contribution abstract

Keywords: alumina nanocomposite, surfaces
Published in RUNG: 10.02.2020; Views: 2887; Downloads: 0
This document has many files! More...

30.
CVD Growth of Molybdenum Diselenide Surface Structures with Tailored Morphology
M. Naeem Sial, Usman Muhammad, Binjie Zheng, Yanan Yu, Andraž Mavrič, Fangzhu Qing, Matjaž Valant, Zhiming M. Wang, 2018, original scientific article

Abstract: Controllable atmospheric pressure CVD has been optimized to grow transition metal dichalcogenide MoSe2 with tunable morphology at 750 °C on a silicon substrate with a native oxide layer of 250 nm. Utilizing tetrapotassium perylene-3,4,9,10-tetracarboxylate (PTAS) as a seed promoter and varying the vertical distance between the substrate and the precursor MoO3, different morphologies of MoSe2 were achieved, including 2D triangles, hexagons, 3D pyramids and vertically aligned MoSe2 sheets. We find that the shape of MoSe2 is highly dependent upon the distance h between the substrate and the precursor. The change in the morphology is attributed to the confinement of vapor (MoO3 and Se) precursors and their concentrations due to the change in h. These results are helpful in improving our understanding about the factors which influence the morphology (shape evolution) and also the continuous growth of MoSe2 films.
Keywords: Transition metal dichalcogenides, 2D materials, Seed promotor, Chemical vapor deposition, Molybdenum diselenide
Published in RUNG: 20.08.2018; Views: 3739; Downloads: 14
.pdf Full text (2,68 MB)

Search done in 0.08 sec.
Back to top