Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


91 - 98 / 98
Na začetekNa prejšnjo stran12345678910Na naslednjo stranNa konec
Markov chain
Vijayan Vijesh, K. Satheesh Kumar, Mohanachandran Nair Sindhu Swapna, Sankaranarayana Iyer Sankararaman, 2022, izvirni znanstveni članek

Najdeno v: osebi
Ključne besede: complex network, Markov chain, rectifier, time series, ripple
Objavljeno: 29.11.2022; Ogledov: 322; Prenosov: 0
.pdf Polno besedilo (1,17 MB)

Comprehensive analysis of copper plasma
Asokan Ajith, Mohanachandran Nair Sindhu Swapna, Humberto Cabrera, Sankaranarayana Iyer Sankararaman, 2023, izvirni znanstveni članek

Najdeno v: osebi
Ključne besede: LIBS, laser-induced plasma, plasma parameters, copper plasma
Objavljeno: 25.04.2023; Ogledov: 155; Prenosov: 8
URL Polno besedilo (0,00 KB)
Gradivo ima več datotek! Več...

Fractal and time-series analyses based rhonchi and bronchial auscultation: A machine learning approach
SWAPNA MOHANACHANDRAN NAIR SINDHU SWAPNA,, 2022, izvirni znanstveni članek

Opis: Objectives: The present work reports the study of 34 rhonchi (RB) and Bronchial Breath (BB) signals employing machine learning techniques, timefrequency, fractal, and non-linear time-series analyses. Methods: The timefrequency analyses and the complexity in the dynamics of airflow in BB and RB are studied using both Power Spectral Density (PSD) features and non-linear measures. For accurate prediction of these signals, PSD and nonlinear measures are fed as input attributes to various machine learning models. Findings: The spectral analyses reveal fewer, low-intensity frequency components along with its overtones in the intermittent and rapidly damping RB signal. The complexity in the dynamics of airflow in BB and RB is investigated through the fractal dimension, Hurst exponent, phase portrait, maximal Lyapunov exponent, and sample entropy values. The greater value of entropy for the RB signal provides an insight into the internal morphology of the airways containing mucous and other obstructions. The Principal Component Analysis (PCA) employs PSD features, and Linear Discriminant Analysis (LDA) along with Pattern Recognition Neural Network (PRNN) uses non-linear measures for predicting BB and RB. Signal classification based on phase portrait features evaluates the multidimensional aspects of signal intensities, whereas that based on PSD features considers mere signal intensities. The principal components in PCA cover about 86.5% of the overall variance of the data class, successfully distinguishing BB and RB signals. LDA and PRNN that use nonlinear time-series parameters identify and predict RB and BB signals with 100% accuracy, sensitivity, specificity, and precision. Novelty: The study divulges the potential of non-linear measures and PSD features in classifying these signals enabling its application to be extended for low-cost, non-invasive COVID-19 detection and real-time health monitoring.
Najdeno v: osebi
Ključne besede: lung signal, fractal analysis, sample entropy, non­linear time­series, machine learning techniques
Objavljeno: 30.06.2022; Ogledov: 561; Prenosov: 0
.pdf Polno besedilo (1,50 MB)

Iskanje izvedeno v 0 sek.
Na vrh