21. Exploring the population of Galactic very-high-energy γ-ray sourcesConstantin Steppa, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, objavljeni znanstveni prispevek na konferenci Opis: At very high energies (VHE), the emission of γ rays is dominated by discrete sources. Due to the limited resolution and sensitivity of current-generation instruments, only a small fraction of the total Galactic population of VHE γ-ray sources has been detected significantly. The larger part of the population can be expected to contribute as a di˙use signal alongside emission originating from propagating cosmic rays. Without quantifying the source population, it is not possible to disentangle these two components. Based on the H.E.S.S. Galactic plane survey, a numerical approach has been taken to develop a model of the population of Galactic VHE γ-ray sources, which is shown to account accurately for the observational bias. We present estimates of the absolute number of sources in the Galactic Plane and their contribution to the total VHE γ-ray emission for five di˙erent spatial source distributions. Prospects for CTA and its ability to constrain the model are discussed. Finally, first results of an extension of our modelling approach using machine learning to extract more information from the available data set are presented. Ključne besede: Cherenkov Telescope Array, very-high energy gamma-rays, gamma-ray sources Objavljeno v RUNG: 18.09.2023; Ogledov: 1250; Prenosov: 6 Celotno besedilo (744,16 KB) Gradivo ima več datotek! Več... |
22. Prospects for Galactic transient sources detection with the Cherenkov Telescope ArrayAlicia López-Oramas, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, objavljeni znanstveni prispevek na konferenci Opis: Several types of Galactic sources, like magnetars, microquasars, novae or pulsar wind nebulae flares, display transient emission in the X-ray band. Some of these sources have also shown emission at MeV–GeV energies. However, none of these Galactic transients have ever been detected in the very-high-energy (VHE; E>100 GeV) regime by any Imaging Air Cherenkov Telescope (IACT). The Galactic Transient task force is a part of the Transient Working group of the Cherenkov Telescope Array (CTA) Consortium. The task force investigates the prospects of detecting the VHE counterpart of such sources, as well as their study following Target of Opportunity (ToO) observations. In this contribution, we will show some of the results of exploring the capabilities of CTA to detect and observe Galactic transients; we assume di˙erent array configurations and observing strategies. Ključne besede: Cherenkov Telescope Array, galactic transient sources, very-high energy gamma rays Objavljeno v RUNG: 18.09.2023; Ogledov: 1282; Prenosov: 5 Celotno besedilo (1,57 MB) Gradivo ima več datotek! Več... |
23. Performance of the Cherenkov Telescope Array in the presence of cloudsMario Pecimotika, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, objavljeni znanstveni prispevek na konferenci Opis: The Cherenkov Telescope Array (CTA) is the future ground-based observatory for gamma-ray astronomy at very high energies. The atmosphere is an integral part of every Cherenkov telescope. Di˙erent atmospheric conditions, such as clouds, can reduce the fraction of Cherenkov photons produced in air showers that reach ground-based telescopes, which may a˙ect the performance. Decreased sensitivity of the telescopes may lead to misconstructed energies and spectra. This study presents the impact of various atmospheric conditions on CTA performance. The atmospheric transmission in a cloudy atmosphere in the wavelength range from 203 nm to 1000 nm was simulated for di˙erent cloud bases and di˙erent optical depths using the MODerate resolution atmospheric TRANsmission (MODTRAN) code. MODTRAN output files were used as inputs for generic Monte Carlo simulations. The analysis was performed using the MAGIC Analysis and Reconstruction Software (MARS) adapted for CTA. As expected, the e˙ects of clouds are most evident at low energies, near the energy threshold. Even in the presence of dense clouds, high-energy gamma rays may still trigger the telescopes if the first interaction occurs lower in the atmosphere, below the cloud base. A method to analyze very high-energy data obtained in the presence of clouds is presented. The systematic uncertainties of the method are evaluated. These studies help to gain more precise knowledge about the CTA response to cloudy conditions and give insights on how to proceed with data obtained in such conditions. This may prove crucial for alert-based observations and time-critical studies of transient phenomena. Ključne besede: Cherenkov Telescope Array, very-high energy gamma rays, MODerate resolution atmospheric TRANsmission code, MAGIC Analysis and Reconstruction Software Objavljeno v RUNG: 18.09.2023; Ogledov: 1283; Prenosov: 5 Celotno besedilo (980,51 KB) Gradivo ima več datotek! Več... |
24. Performance of a proposed event-type based analysis for the Cherenkov Telescope ArrayTarek Hassan, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, objavljeni znanstveni prispevek na konferenci Opis: The Cherenkov Telescope Array (CTA) will be the next-generation observatory in the field of very-high-energy (20 GeV to 300 TeV) gamma-ray astroparticle physics. Classically, data analysis in the field maximizes sensitivity by applying quality cuts on the data acquired. These cuts, optimized using Monte Carlo simulations, select higher quality events from the initial dataset. Subsequent steps of the analysis typically use the surviving events to calculate one set of instrument response functions (IRFs). An alternative approach is the use of event types, as implemented in experiments such as the Fermi-LAT. In this approach, events are divided into sub-samples based on their reconstruction quality, and a set of IRFs is calculated for each sub-sample. The sub-samples are then combined in a joint analysis, treating them as independent observations. This leads to an improvement in performance parameters such as sensitivity, angular and energy resolution. Data loss is reduced since lower quality events are included in the analysis as well, rather than discarded. In this study, machine learning methods will be used to classify events according to their expected angular reconstruction quality. We will report the impact on CTA high-level performance when applying such an event-type classification, compared to the classical procedure. Ključne besede: Cherenkov Telescope Array, very-high-energy gamma-rays, event-type based analysis Objavljeno v RUNG: 18.09.2023; Ogledov: 1314; Prenosov: 9 Celotno besedilo (1,03 MB) Gradivo ima več datotek! Več... |
25. Monte Carlo Simulations and Validation of NectarCAM, a Medium Sized Telescope Camera for CTAThomas P. Armstrong, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, objavljeni znanstveni prispevek na konferenci Opis: The upcoming Cherenkov Telescope Array (CTA) ground-based gamma-ray observatory will open up our view of the very high energy Universe, o˙ering an improvement in sensitivity of 5-10 times that of previous experiments. NectarCAM is one of the proposed cameras for the Medium-Sized Telescopes (MST) which have been designed to cover the core energy range of CTA, from 100 GeV to 10 TeV. The final camera will be capable of GHz sampling and provide a field of view of 8 degrees with its 265 modules of 7 photomultiplier each (for a total of 1855 pixels). In order to validate the performance of NectarCAM, a partially-equipped prototype has been constructed consisting of only the inner 61-modules. It has so far undergone testing at the integration test-bench facility in CEA Paris-Saclay (France) and on a prototype of the MST structure in Adlershof (Germany). To characterize the performance of the prototype, Monte Carlo simulations were conducted using a detailed model of the 61 module camera in the CORSIKA/sim_telarray framework. This contribution provides an overview of this work including the comparison of trigger and readout performance on test-bench data and trigger and image parameterization performance during on-sky measurements. Ključne besede: Cherenkov Telescope Array, ground-based gamma-ray observatory, NectarCAM, Medium-Sized Telescopes Objavljeno v RUNG: 18.09.2023; Ogledov: 1290; Prenosov: 5 Celotno besedilo (1,83 MB) Gradivo ima več datotek! Več... |
26. Prototype Open Event Reconstruction Pipeline for the Cherenkov Telescope ArrayMaximilian Nöthe, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, objavljeni znanstveni prispevek na konferenci Opis: The Cherenkov Telescope Array (CTA) is the next-generation gamma-ray observatory currently under construction. It will improve over the current generation of imaging atmospheric Cherenkov telescopes (IACTs) by a factor of five to ten in sensitivity and it will be able to observe the whole sky from a combination of two sites: a northern site in La Palma, Spain, and a southern one in Paranal, Chile. CTA will also be the first open gamma-ray observatory. Accordingly, the data analysis pipeline is developed as open-source software. The event reconstruction pipeline accepts raw data of the telescopes and processes it to produce suitable input for the higher-level science tools. Its primary tasks include reconstructing the physical properties of each recorded shower and providing the corresponding instrument response functions.
ctapipe is a framework providing algorithms and tools to facilitate raw data calibration, image extraction, image parameterization and event reconstruction. Its main focus is currently the analysis of simulated data but it has also been successfully applied for the analysis of data obtained with the first CTA prototype telescopes, such as the Large-Sized Telescope 1 (LST-1).
pyirf is a library to calculate IACT instrument response functions, needed to obtain physics results like spectra and light curves, from the reconstructed event lists.
Building on these two, protopipe is a prototype for the event reconstruction pipeline for CTA. Recent developments in these software packages will be presented. Ključne besede: Cherenkov Telescope Array, gamma-ray observatory, vent reconstruction pipeline, Large-Sized Telescope 1 Objavljeno v RUNG: 18.09.2023; Ogledov: 1124; Prenosov: 6 Celotno besedilo (1,42 MB) Gradivo ima več datotek! Več... |
27. The Cherenkov Telescope Array transient and multi-messenger programAlessandro Carosi, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, objavljeni znanstveni prispevek na konferenci Opis: The Cherenkov Telescope Array (CTA) is a next generation ground-based very-high-energy gamma-ray observatory that will allow for observations in the >10 GeV range with unprece-dented photon statistics and sensitivity. This will enable the investigation of the yet-marginally explored physics of short-time-scale transient events. CTA will thus become an invaluable instru-ment for the study of the physics of the most extreme and violent objects and their interactions with the surrounding environment. The CTA Transient program includes follow-up observations of a wide range of multi-wavelength and multi-messenger alerts, ranging from compact galactic binary systems to extragalactic events such as gamma-ray bursts (GRBs), core-collapse supernovae and bright AGN flares. In recent years, the first firm detection of GRBs by current Cherenkov telescope collaborations, the proven connection between gravitational waves and short GRBs, as well as the possible neutrino-blazar association with TXS 0506+056 have shown the importance of coordinated follow-up observations triggered by these di˙erent cosmic signals in the framework of the birth of multi-messenger astrophysics. In the next years, CTA will play a major role in these types of observations by taking advantage of its fast slewing (especially for the CTA Large Size Telescopes), large e˙ective area and good sensitivity, opening new opportunities for time-domain astrophysics in an energy range not a˙ected by selective absorption processes typical of other wavelengths. In this contribution we highlight the common approach adopted by the CTA Tran-sients physics working group to perform the study of transient sources in the very-high-energy regime. Ključne besede: Cherenkov Telescope Array, very-high-energy gamma-rays, CTA Transient program, multi-wavelength astronomy, multi-messenger astronomy Objavljeno v RUNG: 18.09.2023; Ogledov: 1384; Prenosov: 7 Celotno besedilo (1,63 MB) Gradivo ima več datotek! Več... |
28. Reconstruction of stereoscopic CTA events using deep learning with CTLearnTjark Miener, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, objavljeni znanstveni prispevek na konferenci Opis: The Cherenkov Telescope Array (CTA), conceived as an array of tens of imaging atmospheric Cherenkov telescopes (IACTs), is an international project for a next-generation ground-based gamma-ray observatory, aiming to improve on the sensitivity of current-generation instruments a factor of five to ten and provide energy coverage from 20 GeV to more than 300 TeV. Arrays of IACTs probe the very-high-energy gamma-ray sky. Their working principle consists of the simultaneous observation of air showers initiated by the interaction of very-high-energy gamma rays and cosmic rays with the atmosphere. Cherenkov photons induced by a given shower are focused onto the camera plane of the telescopes in the array, producing a multi-stereoscopic record of the event. This image contains the longitudinal development of the air shower, together with its spatial, temporal, and calorimetric information. The properties of the originating very-high-energy particle (type, energy, and incoming direction) can be inferred from those images by reconstructing the full event using machine learning techniques. In this contribution, we present a purely deep-learning driven, full-event reconstruction of simulated, stereoscopic IACT events using CTLearn. CTLearn is a package that includes modules for loading and manipulating IACT data and for running deep learning models, using pixel-wise camera data as input. Ključne besede: Cherenkov Telescope Array, very-high-energy gamma-rays, CTLearn Objavljeno v RUNG: 18.09.2023; Ogledov: 1324; Prenosov: 6 Celotno besedilo (4,96 MB) Gradivo ima več datotek! Več... |
29. The Monitoring, Logging, and Alarm system for the Cherenkov Telescope ArrayAlessandro Costa, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, objavljeni znanstveni prispevek na konferenci Opis: We present the current development of the Monitoring, Logging and Alarm subsystems in the framework of the Array Control and Data Acquisition System (ACADA) for the Cherenkov Tele-scope Array (CTA). The Monitoring System (MON) is the subsystem responsible for monitoring and logging the overall array (at each of the CTA sites) through the acquisition of monitoring and logging information from the array elements. The MON allows us to perform a systematic approach to fault detection and diagnosis supporting corrective and predictive maintenance to minimize the downtime of the system. We present a unified tool for monitoring data items from the telescopes and other devices deployed at the CTA array sites. Data are immediately available for the operator interface and quick-look quality checks and stored for later detailed inspection. The Array Alarm System (AAS) is the subsystem that provides the service that gathers, filters, exposes, and persists alarms raised by both the ACADA processes and the array elements su-pervised by the ACADA system. It collects alarms from the telescopes, the array calibration, the environmental monitoring instruments and the ACADA systems. The AAS sub-system also creates new alarms based on the analysis and correlation of the system software logs and the status of the system hardware providing the filter mechanisms for all the alarms. Data from the alarm system are then sent to the operator via the human-machine interface. Ključne besede: Cherenkov Telescope Array, Array Control and Data Acquisition System, Monitoring System, Array Alarm System Objavljeno v RUNG: 18.09.2023; Ogledov: 1176; Prenosov: 5 Celotno besedilo (936,81 KB) Gradivo ima več datotek! Več... |
30. Application of pattern spectra and convolutional neural networks to the analysis of simulated Cherenkov Telescope Array dataJann Aschersleben, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, objavljeni znanstveni prispevek na konferenci Opis: The Cherenkov Telescope Array (CTA) will be the next generation gamma-ray observatory and will be the major global instrument for very-high-energy astronomy over the next decade, o˙ering 5 − 10 × better flux sensitivity than current generation gamma-ray telescopes. Each telescope will provide a snapshot of gamma-ray induced particle showers by capturing the induced Cherenkov emission at ground level. The simulation of such events provides images that can be used as training data for convolutional neural networks (CNNs) to determine the energy of the initial gamma rays. Compared to other state-of-the-art algorithms, analyses based on CNNs promise to further enhance the performance to be achieved by CTA.
Pattern spectra are commonly used tools for image classification and provide the distributions of the shapes and sizes of various objects comprising an image. The use of relatively shallow CNNs on pattern spectra would automatically select relevant combinations of features within an image, taking advantage of the 2D nature of pattern spectra. In this work, we generate pattern spectra from simulated gamma-ray events instead of using the raw images themselves in order to train our CNN for energy reconstruction. This is di˙erent from other relevant learning and feature selection methods that have been tried in the past. Thereby, we aim to obtain a significantly faster and less computationally intensive algorithm, with minimal loss of performance. Ključne besede: Cherenkov Telescope Array, very-high-energy astronomy, convolutional neural networks Objavljeno v RUNG: 18.09.2023; Ogledov: 1247; Prenosov: 5 Celotno besedilo (1,24 MB) Gradivo ima več datotek! Več... |