Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 63
First pagePrevious page1234567Next pageLast page
1.
The Pierre Auger Observatory open data
A. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, original scientific article

Abstract: The Pierre Auger Collaboration has embraced the concept of open access to their research data since its foundation, with the aim of giving access to the widest possible community. A gradual process of release began as early as 2007 when 1% of the cosmic-ray data was made public, along with 100% of the space-weather information. In February 2021, a portal was released containing 10% of cosmic-ray data collected by the Pierre Auger Observatory from 2004 to 2018, during the first phase of operation of the Observatory. The Open Data Portal includes detailed documentation about the detection and reconstruction procedures, analysis codes that can be easily used and modified and, additionally, visualization tools. Since then, the Portal has been updated and extended. In 2023, a catalog of the highest-energy cosmic-ray events examined in depth has been included. A specific section dedicated to educational use has been developed with the expectation that these data will be explored by a wide and diverse community, including professional and citizen scientists, and used for educational and outreach initiatives. This paper describes the context, the spirit, and the technical implementation of the release of data by the largest cosmic-ray detector ever built and anticipates its future developments.
Keywords: ultra-high-energy cosmic rays (UHECRs), extensive air showers, Pierre Auger Observatory, open data, UHECR event data, space weather data, Auger Open Data Portal
Published in RUNG: 03.04.2025; Views: 377; Downloads: 8
.pdf Full text (3,12 MB)
This document has many files! More...

2.
A new view of UHECRs with the Pierre Auger Observatory
Denise Boncioli, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, published scientific conference contribution

Abstract: In its Phase I, the Pierre Auger Observatory has led to several observations, driving the field of ultra- high-energy cosmic ray (UHECR) research over the last 20 years. Major achievements obtained so far include the unprecedented precise energy spectrum and its features, the observables linked to the UHECR mass composition and the distribution of arrival directions of the most energetic events. These results, together with the non-observation of high-energy neutrinos and photons, strongly disfavor the pre-Auger pure-proton paradigm. In this talk, we will provide an overview on the main results of the Observatory, and describe possible astrophysical scenarios for their interpretation. The prospects of improving the current understanding about UHECR characteristics during the Phase II of the Observatory will be also shown.
Keywords: ultra-high-energy cosmic rays, Pierre Auger Observatory, UHE neutrinos, UHE photons, Auger Phase I, AugerPrime upgrade, Auger Phase II, UHECR mass composition, UHECR energy spectrum, UHECR anisotropy studies, UHECR astrophysical scenarios, UHECR data interpretation
Published in RUNG: 24.03.2025; Views: 407; Downloads: 4
.pdf Full text (3,28 MB)
This document has many files! More...

3.
Astrophysical models to interpret the Pierre Auger Observatory data
Juan Manuel González, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, published scientific conference contribution

Abstract: The Pierre Auger Observatory has measured the spectrum of ultra-high-energy cosmic rays with unprecedented precision, as well as the distribution of the depths of the maximum of the shower development in the atmosphere, which provide a reliable estimator of the mass composition. The measurements above 10[sup]17.8 eV can be interpreted assuming two populations of uniformly distributed sources, one with a soft spectrum dominating the flux below few EeV, and another one with a very hard spectrum dominating above that energy. When considering the presence of intense extragalactic magnetic fields between our Galaxy and the closest sources and a high-energy population with low spatial density, a magnetic horizon appears, suppressing the cosmic ray's flux at low-energies, which could explain the very hard spectrum observed at Earth. The distribution of arrival directions, which at energies above 32 EeV shows indications of a correlation with a population of starburst galaxies or the radio galaxy Centaurus A (Cen A), are also important to constrain the sources. It is shown that adding a fractional contribution from these sources of about 20% on top of an homogeneous background leads to an improvement of the model likelihood.
Keywords: ultra-high-energy cosmic rays, UHECR energy spectrum, UHECR mass composition, UHECR anisotropies, UHECR propagation, UHECR data interpretation, extragalactic magnetic fields, starburst galaxies, Centaurus A, Pierre Auger Observatory
Published in RUNG: 24.03.2025; Views: 329; Downloads: 7
.pdf Full text (790,55 KB)
This document has many files! More...

4.
Outreach, education, and communication initiatives at the Pierre Auger Observatory
V. Scherini, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2024, published scientific conference contribution

Abstract: The Pierre Auger Collaboration has a long tradition of outreach that engages a wide range of people of all ages worldwide. In Malargüe, Argentina, the heart of the Pierre Auger Observatory, the Visitor Center offers a permanent interactive exhibition. Every November Collaboration meeting, we organize a Science Fair where Argentinian students from across the country can present their works and talk with the scientists at the site, motivating youngsters to pursue a career in Science. We also participate in the local parade, commemorating the foundation of Malargüe. We have developed numerous activities and interactive tools, including a 3-D event display. We have an open data policy and share them according to FAIR principles. Recently, we joined the International Masterclasses within the International Particle Physics Outreach Group, using a framework similar to the ATLAS and CMS Collaborations. In this contribution, we summarize all of our Outreach activities.
Keywords: ultra-high-energy cosmic rays, Pierre Auger Observatory, outreach, education, communication, Auger visitor center, Auger science fair, open data policy, FAIR principles, International Particle Physics Outreach Group, International Masterclasses
Published in RUNG: 17.02.2025; Views: 555; Downloads: 6
.pdf Full text (1,90 MB)
This document has many files! More...

5.
Modeling of solvent role in protein folding experiments : dissertation
Knarik Yeritsyan, 2025, doctoral dissertation

Abstract: The Zimm-Bragg (ZB) model serves as a fundamental framework for elucidating conformational transitions in biopolymers, offering simplicity and efficacy in processing experimental data. This study provides a comprehensive review of the Zimm-Bragg model and its Hamiltonian formulation, with particular emphasis on incorporating water interactions and chain size effects into the computational framework. We propose a modified ZB model that accounts for water-polypeptide interactions, demonstrating its ability to describe phenomena such as cold denaturation and helix-coil transitions. In the realm of NanoBioTechnologies, the manipulation of short polypeptide chains is commonplace. Experimental investigation of these chains in vitro often relies on techniques like Circular Dichroism (CD) and timeresolved infrared spectroscopy. Determining interaction parameters necessitates processing the temperature dependence of the normalized degree of helicity through model fitting. Leveraging recent advancements in the Hamiltonian formulation of the Zimm and Bragg model, we explicitly incorporate chain length and solvent effects into the theoretical description. The resulting expression for helicity degree adeptly fits experimental data, yielding hydrogen bonding energies and nucleation parameter values consistent with field standards. Differential Scanning Calorimetry (DSC) stands as a potent tool for measuring the specific heat profile of materials, including proteins. However, relating the measured profile to microscopic properties requires a suitable model for fitting. We propose a novel algorithm for processing DSC experimental data based on the ZB theory of protein folding in water. This approach complements the classical two-state paradigm and provides insights into protein-water and intraprotein hydrogen bonding energies. An analytical expression for heat capacity, considering water interaction, is derived and successfully applied to fit numerous DSC experimental datasets reported in the literature. Additionally, we compare this approach with the classical two-state model, demonstrating its efficacy in fitting DSC data. Furthermore, we have developed and launched a free online tool for processing CD and DSC experimental data related to protein folding, aiming to support scientific research.
Keywords: Zimm-Bragg model, conformational transitions, helix-coil transitions, cold denaturation, circular dichroism, differential scanning calorimetry, protein folding, water-protein interaction, hydrogen bonding energy, degree of helicity, short polypeptide chains, protein heat capacity, protein data analysis, dissertations
Published in RUNG: 27.01.2025; Views: 738; Downloads: 13
.pdf Full text (5,12 MB)

6.
Data and data analysis : aktivnosti v okviru Tedna Univerze v Novi Gorici, TUNG 2023, 4. 10. 2023, Vipava
Ahmad Hosseini, 2023, other performed works

Abstract: In contemporary times, the words "Data" and "Data Analysis" are commonly encountered. This seminar offers an opportunity to understand the concept of Data Analysis and witness some applications in real-world scenarios pertaining to some industrial problems.
Keywords: Data, Data Analysis
Published in RUNG: 06.01.2025; Views: 503; Downloads: 2
URL Link to file
This document has many files! More...

7.
Existing open data practices in high energy astro- and particle physics : lecture at the Mini workshop on Open Science, 6. 11. 2024, Ajdovščina
Serguei Vorobiov, 2024, unpublished conference contribution

Abstract: In this presentation, the existing open data practices in high energy astro-, particle and astroparticle physics are presented. Open data has become fundamental in astrophysics, particle, and astroparticle physics, enhancing collaboration, reproducibility, and transparency, while accelerating innovation. A recent shift toward openness, marked by data-sharing initiatives and accessible resources, is driving breakthroughs like the multi-messenger observation of GW170817, a neutron star merger detected in both gravitational waves and gamma rays, and the identification of blazar TXS 0506+056 as a high-energy neutrino source. Across these fields, robust efforts are underway to develop and implement FAIR-compliant data policies, with a wide array of supportive tools, standards, protocols, and software already in use (Virtual Observatory in astrophysics, CERN’s Open Data Portal in particle physics, ...). The challenges of astroparticle physics data, often more complex than traditional astrophysics or particle physics data, call for additional coordination and technical advancements to meet FAIR principles effectively. Machine learning also plays a transformative role in these domains, enhancing the analysis of both proprietary and open data to reveal new insights and optimize research methodologies.
Keywords: open data, FAIR data, astrophysics, high-energy particle physics, astroparticle physics, multi-messenger astronomy
Published in RUNG: 06.01.2025; Views: 679; Downloads: 2
URL Link to file
This document has many files! More...

8.
Faceless machines: early recognition media and entangled bodies : lecture at the "Relatifs" lecture series, Kepler Salon, Johannes Kepler Universität Linz, Österreich, 16. 1. 2024
Eszter Polónyi, 2024, invited lecture at foreign university

Abstract: Eszter Polonyis Vortrag behandelt frühe Systeme automatisierter Identitätserkennung. Einen Fokus bilden Experimente zur Stimmerkennung, wie sie in der Mitte des 20. Jahrhunderts von US-amerikanische Telekommunikationsunternehmen unternommen wurden. Sie geht dabei auch den Verbindungen zur Arbeit mit „noise“ von Medienkünstler*innen nach, darunter Tony Conrad, John Cage und Kurt Kren.
Keywords: media studies, surveillance studies, art history, critical data studies, avant-garde and experimental art
Published in RUNG: 12.02.2024; Views: 2220; Downloads: 10
URL Link to file
This document has many files! More...

9.
With AugerPrime to the phase II of the Pierre Auger Observatory
Daniele Martello, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution

Abstract: AugerPrime, the upgrade of the Pierre Auger Observatory, is nearing completion and the Observatory is now prepared to collect physics data after the commissioning of the new components. The Pierre Auger Observatory has demonstrated, based on the data collected thus far, the existence of the cutoff in the spectrum with high accuracy. However, the origin of this cutoff remains incompletely understood. The upgraded Observatory is designed to address the unresolved questions regarding the nature of the cosmic ray flux cutoff thanks to its capability to disentangle the muon and electromagnetic components of extensive air showers. Furthermore, the measurement of the muon component at ground level can verify the accuracy of hadronic interaction models currently used. This presentation will provide an overview of the status of the Observatory and the accurate commissioning done before the start of the physics run. Furthermore, we will present the initial data from Phase II data mainly dedicated to proving the continuity of operation of the Observatory from Phase I to Phase II.
Keywords: Pierre Auger Observatory, ultra-high energy cosmic rays, AugerPrime detector upgrade, Pierre Auger data
Published in RUNG: 24.01.2024; Views: 3543; Downloads: 13
.pdf Full text (4,23 MB)
This document has many files! More...

10.
Portals to data of the Pierre Auger Observatory
P. L. Ghia, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution

Abstract: The Pierre Auger Collaboration has embraced the concept of open access to their data from its foundation. As early as 2007, when the Observatory was almost complete, a portal to 1% of the data from the surface detector was created and updated every year for over ten years. Meant for educational purposes, the portal was the first step towards making data public by the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. A new portal was opened in February 2021, at the end of the first phase of operation. Presented for the first time at the ICRC 2021, it includes not only 10% of the data–raw and processed–from the different instruments of the Observatory, but also a visualisation tool, documentation to make the data user-friendly, and analyses codes that can be readily used and modified. Since 2021, the portal has been updated three times: new data, documentation, and codes have been added. Moreover, the portal has become dual, with one part dedicated to scientists and the other to educational users. Furthermore, a catalog containing details of the 100 highest-energy cosmic rays has been included. At this conference we will discuss these new features, as well as our intentions for the future. We will also share our approach and methods for making data public and understandable to external users, from simplifying the data structure to translating codes from in-house computing architecture into popular available software.
Keywords: Pierre Auger Observatory, ultra-high energy cosmic rays, portals to data
Published in RUNG: 24.01.2024; Views: 2937; Downloads: 7
.pdf Full text (2,23 MB)
This document has many files! More...

Search done in 0.04 sec.
Back to top