Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 5 / 5
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Implementation of a Markov Chain Monte Carlo method to inorganic aerosol modeling of observations from the MCMA-2003 campaign : part II
F. M. San Martini, E. J. Dunlea, R. M. Volkamer, T. B. Onasch, J. Jayne, M. R. Canagaratna, D. Worsnop, C. E. Kolb, J. H. Shorter, Katja Džepina, 2006, izvirni znanstveni članek

Opis: A Markov Chain Monte Carlo model for integrating the observations of inorganic species with a thermodynamic equilibrium model was presented in Part I of this series. Using observations taken at three ground sites, i. e. a residential, industrial and rural site, during the MCMA-2003 campaign in Mexico City, the model is used to analyze the inorganic particle and ammonia data and to predict gas phase concentrations of nitric and hydrochloric acid. In general, the model is able to accurately predict the observed inorganic particle concentrations at all three sites. The agreement between the predicted and observed gas phase ammonia concentration is excellent. The NOz concentration calculated from the NOy, NO and NO2 observations is of limited use in constraining the gas phase nitric acid concentration given the large uncertainties in this measure of nitric acid and additional reactive nitrogen species. Focusing on the acidic period of 9-11 April identified by Salcedo et al. ( 2006), the model accurately predicts the particle phase observations during this period with the exception of the nitrate predictions after 10: 00 a. m. ( Central Daylight Time, CDT) on 9 April, where the model underpredicts the observations by, on average, 20%. This period had a low planetary boundary layer, very high particle concentrations, and higher than expected nitrogen dioxide concentrations. For periods when the particle chloride observations are consistently above the detection limit, the model is able to both accurately predict the particle chloride mass concentrations and provide well-constrained HCl ( g) concentrations. The availability of gas-phase ammonia observations helps constrain the predicted HCl ( g) concentrations. When the particles are aqueous, the most likely concentrations of HCl ( g) are in the sub-ppbv range. The most likely predicted concentration of HCl ( g) was found to reach concentrations of order 10 ppbv if the particles are dry. Finally, the atmospheric relevance of HCl ( g) is discussed in terms of its indicator properties for the possible influence of chlorine-mediated photochemistry in Mexico City.
Ključne besede: secondary organic aerosols, Mexico City, MCMA-2003 field campaign, thermodynamic equilibrium
Objavljeno v RUNG: 11.04.2021; Ogledov: 2100; Prenosov: 0
Gradivo ima več datotek! Več...

2.
Technical note : use of a beam width probe in an aerosol mass spectrometer to monitor particle collection efficiency in the field
Dara Salcedo, T. B. Onasch, M. R. Canagaratna, Katja Džepina, J. A. Huffman, J. Jayne, D. Worsnop, C. E. Kolb, S. Weimer, F. Drewnick, 2007, izvirni znanstveni članek

Opis: Two Aerodyne Aerosol Mass Spectrometers (Q-AMS) were deployed in Mexico City, during the Mexico City Metropolitan Area field study (MCMA-2003) from 29 March - 4 May 2003 to investigate particle concentrations, sources, and processes. We report the use of a particle beam width probe (BWP) in the field to quantify potential losses of particles due to beam broadening inside the AMS caused by particle shape (nonsphericity) and particle size. Data from this probe show that no significant mass of particles was lost due to excessive beam broadening; i.e. the shape- and size-related collection efficiency (E-s) of the AMS during this campaign was approximately one. Comparison of the BWP data from MCMA-2003 with other campaigns shows that the same conclusion holds for several other urban, rural and remotes sites. This means that the aerodynamic lens in the AMS is capable of efficiently focusing ambient particles into a well defined beam and onto the AMS vaporizer for particles sampled in a wide variety of environments. All the species measured by the AMS during MCMA-2003 have similar attenuation profiles which suggests that the particles that dominate the mass concentration were internally mixed most of the time. Only for the smaller particles ( especially below 300 nm), organic and inorganic species show different attenuation versus particle size which is likely due to partial external mixing of these components. Changes observed in the focusing of the particle beam in time can be attributed, in part, to changes in particle shape (i.e. due to relative humidity) and size of the particles sampled. However, the relationships between composition, atmospheric conditions, and particle shape and size appear to be very complex and are not yet completely understood.
Ključne besede: atmospheric aerosol, organic aerosols, aerodynamic lenses, Mexico City
Objavljeno v RUNG: 11.04.2021; Ogledov: 2521; Prenosov: 0
Gradivo ima več datotek! Več...

3.
Detection of particle-phase polycyclic aromatic hydrocarbons in Mexico City using an aerosol mass spectrometer
Katja Džepina, Janet Arey, Linsey C. Marr, D. Worsnop, Dara Salcedo, Q. Zhang, Timothy B. Onasch, Luisa T. Molina, Mario J. Molina, Jose L. Jimenez, 2007, izvirni znanstveni članek

Opis: We report the quantification of ambient particle-bound polycyclic aromatic hydrocarbons (PAHs) for the first time using a real-time aerosol mass spectrometer. These measurements were carried out during the Mexico City Metropolitan Area field study (MCMA-2003) that took place from March 29 to May 4, 2003. This was the first time that two different fast, real-time methods have been used to quantify PAHs alongside traditional filter-based measurements in an extended field campaign. This paper focuses on the technical aspects of PAH detection in ambient air with the Aerodyne AMS equipped with a quadrupole mass analyzer (Q-AMS), on the comparison of PAHs measured by the Q-AMS to those measured with the other two techniques, and on some features of the ambient results. PAHs are very resistant to fragmentation after ionization. Based on laboratory experiments with eight PAH standards, we show that their molecular ions, which for most particulate PAHs in ambient particles are larger than 200 amu, are often the largest peak in their Q-AMS spectra. Q-AMS spectra of PAH are similar to those in the NIST database, albeit with more fragmentation. We have developed a subtraction method that allows the removal of the contribution from non-PAH organics to the ion signals of the PAHs in ambient data. We report the mass concentrations of all individual groups of PAHs with molecular weights of 202, 216, 226 + 228, 240 + 242, 250 + 252, 264 + 266, 276 + 278, 288 + 290, 300 + 302, 316 and 326 + 328, as well as their sum as the total PAH mass concentration. The time series of the Photoelectric Aerosol Sensor (PAS) and Q-AMS PAH measurements during MCMA-2003 are well correlated, with the smallest difference between measured PAH concentrations observed in the mornings when ambient aerosols loadings are dominated by fresh traffic emissions. The Q-AMS PAH measurements are also compared to those from GC–MS analysis of filter samples. Several groups of PAHs show agreement within the uncertainties, while the Q-AMS measurements are larger than the GC–MS ones for several others. In the ambient Q-AMS measurements the presence of ions tentatively attributed to cyclopenta[cd]pyrene and dicyclopentapyrenes causes signals at m/z 226 and 250, which are significantly stronger than the signals in GC–MS analysis of filter samples. This suggests that very labile, but likely toxic, PAHs were present in the MCMA atmosphere that decayed rapidly due to reaction during filter sampling, and this may explain at least some of the differences between the Q-AMS and GC–MS measurements.
Ključne besede: AMS, PAH, Mexico City
Objavljeno v RUNG: 11.04.2021; Ogledov: 2816; Prenosov: 0
Gradivo ima več datotek! Več...

4.
Comparative Analysis of urban atmospheric aerosol by particle-induced X-ray emission (PIXE), proton elastic scattering analysis (PESA), and aerosol mass spectrometry (AMS)
K.S. Johnson, A. Laskin, Jose L. Jimenez, V. Shutthanandan, Luisa T. Molina, Dara Salcedo, Katja Džepina, Mario J. Molina, 2008, izvirni znanstveni članek

Opis: A multifaceted approach to atmospheric aerosol analysis is often desirable infield studies where an understanding of technical comparability among different measurement techniques is essential. Herein, we report quantitative intercomparisons of particle-induced X-ray emission (PIXE) and proton elastic scattering analysis (PESA), performed offline under a vacuum, with analysis by aerosol mass spectrometry (AMS) carried out in real-time during the MCMA-2003 Field Campaign in the Mexico City Metropolitan Area. Good agreement was observed for mass concentrations of PIXE-measured sulfur (assuming it was dominated by SO42-) and AMS-measured sulfate during most of the campaign. PESA-measured hydrogen mass was separated into sulfate H and organic H mass fractions, assuming the only major contributions were (NH4)(2)SO4 and organic compounds. Comparison of the organic H mass with AMS organic aerosol measurements indicates that about 75% of the mass of these species evaporated under a vacuum. However similar to 25% of the organics does remain under a vacuum, which is only possible with low-vapor-pressure compounds, and which supports the presence of high-molecular-weight or highly oxidized organics consistent with atmospheric aging. Approximately 10% of the chloride detected by AMS was measured by PIXE, possibly in the form of metal-chloride complexes, while the majority of Cl was likely present as more volatile species including NH4Cl. This is the first comparison of PIXE/PESA and AMS and, to our knowledge, also the first report of PESA hydrogen measurements for urban organic aerosols.
Ključne besede: organic aerosols, secondary organic aerosols, Mexico City, MCMA-2003 field campaign
Objavljeno v RUNG: 11.04.2021; Ogledov: 2135; Prenosov: 0
Gradivo ima več datotek! Več...

5.
Modeling the multiday evolution and aging of secondary organic aerosol during MILAGRO 2006
Katja Džepina, Christopher D. Cappa, Rainer Volkamer, Sasha Madronich, Peter F. DeCarlo, Rahul A. Zaveri, Jose L. Jimenez, 2011, izvirni znanstveni članek

Opis: In this study, we apply several recently proposed models to the evolution of secondary organic aerosols (SOA) and organic gases advected from downtown Mexico City at: an altitude of similar to 3.5 km during three days of aging, in a way that is directly comparable to simulations in regional and global models. We constrain the model with and compare its results to available observations. The model SOA formed from oxidation of volatile organic compounds (V-SOA) when using a non-aging SOA parameterization cannot explain the observed SOA concentrations in aged pollution, despite the increasing importance of the low-NO, channel. However, when using an aging SOA parameterization, V-SOA alone is similar to the regional aircraft observations, highlighting the wide diversity in current V-SOA formulations. When the SOA formed from oxidation of semivolatile and intermediate volatility organic vapors (SI-SOA) is computed following Robinson et al. (2007) the model matches the observed SOA mass, but its 0/C is similar to 2 x too low. With the parameterization of Grieshop et al. (2009), the total SOA mass is similar to 2 x too high, but 0/C and volatility are closer to the observations. Heating or dilution cause the evaporation of a substantial fraction of the model SOA; this fraction is reduced by aging although differently for heating vs dilution. Lifting of the airmass to the free-troposphere during dry convection substantially increases SOA by condensation of semivolatile vapors; this effect is reduced by aging.
Ključne besede: Mexico-city, volatility, semivolatile, transport, campaign
Objavljeno v RUNG: 11.04.2021; Ogledov: 1886; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.03 sek.
Na vrh