Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


21 - 27 / 27
Na začetekNa prejšnjo stran123Na naslednjo stranNa konec
21.
Meta-heuristic algorithms to improve fuzzy C-means and K-means clustering for location allocation of telecenters under e-governance in developing nations
Rajan Gupta, Sunil K. Muttoo, Saibal K. Pal, 2019, izvirni znanstveni članek

Opis: The telecenter, popularly known as the rural kiosk or common service center, is an important building block for the improvement of e-governance in developing nations as they help in better citizen engagement. Setting up of these centers at appropriate locations is a challenging task; inappropriate locations can lead to a huge loss to the government and allied stakeholders. This study proposes the use of various meta-heuristic algorithms (particle swarm optimization, bat algorithm, and ant colony optimization) for the improvement of traditional clustering approaches (K-means and fuzzy C-means) used in the facility location allocation problem and maps them for the betterment of telecenter location allocation. A dataset from the Indian region was considered for the purpose of this experiment. The performance of the algorithms when applied to traditional facility location allocation problems such as set-cover, P-median, and the P-center problem was investigated, and it was found that their efficiency improved by 20%–25% over that of existing algorithms.
Ključne besede: ant colony optimization, bat algorithm, common service center, e-governance, fuzzy clustering, meta-heuristic algorithm, particle swarm optimization
Objavljeno v RUNG: 01.04.2021; Ogledov: 4176; Prenosov: 12
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

22.
Fuzzy C-means clustering and particle swarm optimization based scheme for common service center location allocation
Rajan Gupta, Sunil K. Muttoo, Saibal K. Pal, 2017, izvirni znanstveni članek

Opis: Common Service Centers (CSCs), which are also known as Tele-centers and Rural Kiosks, are important infrastructural options for any country aiming to provide E-Governance services in rural regions. Their main objective is to provide adequate information and services to a country’s rural areas, thereby increasing government-citizen connectivity. Within developing nations, such as India, many CSC allocations are being planned. This study proposes a solution for allocating a CSC for villages in a country according to their E-Governance plan. The Fuzzy C-Means (FCM) algorithm was used for clustering the village dataset and finding a cluster center for CSC allocation, and the Particle Swarm Optimization (PSO) algorithm was used for further optimizing the results obtained from the FCM algorithm based on population. In the context of other studies addressing similar issues, this study highlights the practical implementation of location modeling and analysis. An extensive analysis of the results obtained using a village dataset from India including four prominent states shows that the proposed solution reduces the average traveling costs of villagers by an average of 33 % compared with those of allocating these CSCs randomly in a sorted order and by an average of 11 % relative to centroid allocation using the FCM-based approach only. As compared to traditional approaches like P-Center and P-Median, the proposed scheme is better by 31 % and 14 %, respectively. Therefore, the proposed algorithm yields better results than classical FCM and other types of computing techniques, such as random search & linear programming. This scheme could be useful for government departments managing the allocation of CSCs in various regions. This work should also be useful for researchers optimizing the location allocation schemes used for various applications worldwide.
Ključne besede: common service centers, tele-centers, e-governance, location allocation, fuzzy C-means clustering, particle swarm optimization
Objavljeno v RUNG: 17.02.2021; Ogledov: 4360; Prenosov: 0
Gradivo ima več datotek! Več...

23.
24.
25.
26.
27.
Iskanje izvedeno v 0.02 sek.
Na vrh