11. Demonstrating agreement between radio and fluorescence measurements of the depth of maximum of extensive air showers at the Pierre Auger ObservatoryA. Abdul Halim, Anukriti, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2024, izvirni znanstveni članek Ključne besede: radio measurement, kozmični žarki ekstremnih energij, observatory Pierre Auger Objavljeno v RUNG: 31.01.2024; Ogledov: 1710; Prenosov: 4 Celotno besedilo (444,66 KB) |
12. Anisotropy studies of ultra-high-energy cosmic rays measured at the Pierre Auger ObservatoryJosina Schulte, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci Opis: Measurements of anisotropic arrival directions of ultra-high-energy cosmic rays provide important information for identifying their sources. On large scales, cosmic rays with energies above 8 EeV reveal a dipolar flux modulation in right ascension with a significance of 6.9 deg., with the dipole direction pointing 113◦ away from the Galactic center. This observation is explained by extragalactic origins. Also, model-independent searches for small- and intermediate-scale overdensities have been performed in order to unveil astrophysically interesting regions. On these scales, no statistically significant features could be detected. However, intermediate-scale analyses comparing the measured arrival directions with potential source catalogs show indications for a coincidence of the measured arrival directions with catalogs of starburst galaxies and the Centaurus A region. In this contribution, an overview of the studies regarding anisotropies of the arrival directions of ultra-high-energy cosmic rays measured at the Pierre Auger Observatory on different angular scales is presented and the current results are discussed. Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, UHECR anisotropy studies, UHECR sources Objavljeno v RUNG: 24.01.2024; Ogledov: 2353; Prenosov: 8 Celotno besedilo (5,01 MB) Gradivo ima več datotek! Več... |
13. With AugerPrime to the phase II of the Pierre Auger ObservatoryDaniele Martello, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci Opis: AugerPrime, the upgrade of the Pierre Auger Observatory, is nearing completion and the Observatory is now prepared to collect physics data after the commissioning of the new components. The Pierre Auger Observatory has demonstrated, based on the data collected thus far, the existence of the cutoff in the spectrum with high accuracy. However, the origin of this cutoff remains incompletely understood. The upgraded Observatory is designed to address the unresolved questions regarding the nature of the cosmic ray flux cutoff thanks to its capability to disentangle the muon and electromagnetic components of extensive air showers. Furthermore, the measurement of the muon component at ground level can verify the accuracy of hadronic interaction models currently used. This presentation will provide an overview of the status of the Observatory and the accurate commissioning done before the start of the physics run. Furthermore, we will present the initial data from Phase II data mainly dedicated to proving the continuity of operation of the Observatory from Phase I to Phase II. Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, AugerPrime detector upgrade, Pierre Auger data Objavljeno v RUNG: 24.01.2024; Ogledov: 2193; Prenosov: 9 Celotno besedilo (4,23 MB) Gradivo ima več datotek! Več... |
14. Advances on the Pierre Auger outreach and education programGabriella Cataldi, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci Opis: The Pierre Auger Observatory has implemented a novel method of astroparticle detection that combines various techniques and has an open data policy. The dissemination of information about the different astroparticle detection methods, ranging from surface water-Cherenkov detectors to underground scintillator detectors, is now possible due to access to specialized tools for data analysis. This allows for the introduction of the topic of astroparticles to teachers and students at different educational levels. This marks a significant moment for the Observatory. In this work, we will discuss the diverse outreach initiatives undertaken by the Observatory, which have facilitated interaction among members of the international collaboration and enabled collaborative actions between the permanent staff of the Observatory in Malargüe and other institutions worldwide through synchronous meetings. These programs provide visitors with the opportunity to explore the environment of secondary particle cascades produced by cosmic rays, leading to a record number of monthly visitors since the opening of the Observatory 25 years ago. Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, Pierre Auger Outreach and Education program Objavljeno v RUNG: 24.01.2024; Ogledov: 1948; Prenosov: 12 Celotno besedilo (719,11 KB) Gradivo ima več datotek! Več... |
15. Astrophysical interpretation of energy spectrum and mass composition of cosmic rays as measured at the Pierre Auger ObservatoryEleonora Guido, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci Opis: The combined interpretation of the spectrum and composition measurements plays a key role in the quest for the origin of ultra-high-energy cosmic rays (UHECRs). The Pierre Auger Observatory, thanks to its huge exposure, provides the most precise measurement of the energy spectrum of UHECRs and the most reliable information on their composition, exploiting the distributions of the depth of maximum of the showers in the atmosphere. A combined fit of a simple astrophysical model of UHECR sources to the spectrum and mass composition measurements is used to evaluate the constraining power of the data measured by the Pierre Auger Observatory on the source properties. We find that our data across
the “ankle” feature are well reproduced if two extragalactic populations of sources are considered, one emitting a very soft spectrum which dominates the region below the ankle, and the other taking over at energies above the ankle, with an intermediate mixed composition, a hard spectrum and a low rigidity cutoff. Interestingly, similar results can also be obtained if the medium-mass contribution at lower energy is provided by an additional galactic component. Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, UHECR energy spectrum, UHECR mass composition Objavljeno v RUNG: 24.01.2024; Ogledov: 2054; Prenosov: 10 Celotno besedilo (381,66 KB) Gradivo ima več datotek! Več... |
16. Investigation of multi-messenger properties of FR0 radio galaxy emitted ultra-high energy cosmic raysJon Paul Lundquist, Lukas Merten, Serguei Vorobiov, Margot Boughelilba, Albert Reimer, Paolo Da Vela, F. Tavecchio, G. Bonnoli, C. Righi, 2023, objavljeni znanstveni prispevek na konferenci Opis: Low luminosity Fanaroff-Riley type 0 (FR0) radio galaxies are amongst potential contributors to the observed flux of ultra-high energy cosmic rays (UHECRs). Due to FR0s’ much higher abundance in the local universe than more powerful radio galaxies (e.g., about five times more ubiquitous at redshifts z≤0.05 than FR1s), they could provide a substantial fraction of the total UHECR energy density.
In the presented work, we determine the mass composition and energy spectrum of UHECRs emitted by FR0 sources by fitting simulation results from the CRPropa3 framework to the recently published Pierre Auger Observatory data. The resulting emission spectral characteristics (spectral indices, rigidity cutoffs) and elemental group fractions are compared to the Auger results. The FR0 simulations include the approximately isotropic distribution of FR0s extrapolated from the measured FR0 galaxy properties and various extragalactic magnetic field configurations, including random and large-scale structured fields. We predict the fluxes of secondary photons and neutrinos produced during UHECR propagation through cosmic photon backgrounds. The presented results allow for probing the properties of the FR0 radio galaxies as cosmic-ray sources using observational high-energy multi-messenger data. Ključne besede: ultra-high energy cosmic rays, UHECRs, Pierre Auger Observatory, UHECR propagation, UHECR interactions, UHECR energy spectrum, UHECR mass composition, UHECR sources, Fanaroff-Riley (FR) radio galaxies, FR0 galaxies Objavljeno v RUNG: 24.01.2024; Ogledov: 1521; Prenosov: 40 Celotno besedilo (573,28 KB) Gradivo ima več datotek! Več... |
17. Latest results from the searches for ultra-high-energy photons and neutrinos at the Pierre Auger ObservatoryMarcus Niechciol, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci Opis: The Pierre Auger Observatory is the largest air-shower experiment in the world, offering an unprecedented exposure not only to ultra-high-energy (UHE, �>10^17 eV) cosmic rays, but also to UHE neutral particles, specifically photons and neutrinos. Since the beginning of data taking almost 20 years ago, a number of searches for UHE photons and neutrinos using the different detector systems of the Observatory have been carried out. These searches led to some of the most stringent upper limits on the diffuse—i.e., direction-independent, unresolved—fluxes of photons and neutrinos in the UHE regime. These limits severely constrain current models for the origin of UHE cosmic rays and underline the capabilities of the Pierre Auger Observatory and its leading role in the context of multimessenger astronomy at the highest energies. In this contribution, we give an overview of the current activities concerning searches for UHE photons and neutrinos in the data from the Pierre Auger Observatory. The latest results of the searches for diffuse fluxes of photons and neutrinos will be shown. Furthermore, the follow- up searches for UHE photons
and neutrinos in association with transient events, such as gravitational wave events, will be summarized. In addition, future perspectives in view of the ongoing AugerPrime detector upgrade will be discussed, which will further improve the sensitivity of the Pierre Auger Observatory to neutral particles at the highest energies. Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, AugerPrime, multimessenger astronomy Objavljeno v RUNG: 24.01.2024; Ogledov: 1834; Prenosov: 7 Celotno besedilo (712,17 KB) Gradivo ima več datotek! Več... |
18. Investigating the UHECR characteristics from cosmogenic neutrino limits with the measurements of the Pierre Auger ObservatoryCamilla Petrucci, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci Opis: Cosmogenic neutrinos are expected to originate in the extragalactic propagation of ultra-highenergy cosmic rays (UHECRs), as a result of their interactions with background photons. Due to these reactions, the visible Universe in UHECRs is more limited than in neutrinos, which instead could reach us without interacting after traveling cosmological distances. In this contribution, we exploit a multimessenger approach by computing the expected energy spectrum and mass composition of UHECRs at Earth corresponding to combinations of spectral parameters and mass composition at their sources, as well as parameters related to the UHECR source distribution, and by determining, at the same time, the associated cosmogenic neutrino fluxes. By comparing the expected UHECR observables to the energy spectrum and mass composition measured at the Pierre Auger Observatory above 10^17.8 eV and the expected neutrino fluxes to the most updated neutrino limits, we show the dependence of the neutrino fluxes on the characteristics of the the properties of the potential sources of UHECRs, such as their cosmological evolution and maximum
redshift. In addition, the fraction of protons compatible with the data is also investigated in terms of expected neutrino fluxes. Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays Objavljeno v RUNG: 24.01.2024; Ogledov: 1423; Prenosov: 6 Celotno besedilo (647,90 KB) Gradivo ima več datotek! Več... |
19. International Masterclasses as part of the Pierre Auger Observatory program of Outreach and EducationR. Sarmento, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci Opis: The Pierre Auger Observatory is committed to bringing education and knowledge of cosmic rays to the public, with a strong focus on schools and students. Over the last few years, initiatives have been developed, such as the Science Fair, virtual visits, and participation in international activities on the subject of cosmic rays, including collaborations with external groups. Modern digital tools bringing novel ways of interacting with the public have been explored at these initiatives and also locally at a renewed Visitor Center in Malargüe. The development of tools for the public release of the Auger data, including standardized data formats, analysis notebooks, and a 3D interactive event display, led to the creation of a new activity directed to high-school students called Masterclasses.
The participants are challenged to perform the reconstruction and selection of events using a graphical interface with 3D effects, then combined into a smoothed, exposure-corrected sky map of arrival directions. A final discussion takes place in which the students engage with peers and scientists, looking for answers about the origin of ultra-high-energy cosmic rays. The concept had a successful debut in 2022 and was included in the 2023 edition of the International Masterclasses on Particle Physics, reaching students worldwide. Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays Objavljeno v RUNG: 24.01.2024; Ogledov: 1858; Prenosov: 6 Celotno besedilo (12,06 MB) Gradivo ima več datotek! Več... |
20. Portals to data of the Pierre Auger ObservatoryP. L. Ghia, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, objavljeni znanstveni prispevek na konferenci Opis: The Pierre Auger Collaboration has embraced the concept of open access to their data from its foundation. As early as 2007, when the Observatory was almost complete, a portal to 1% of the data from the surface detector was created and updated every year for over ten years. Meant for educational purposes, the portal was the first step towards making data public by the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. A new portal was opened in
February 2021, at the end of the first phase of operation. Presented for the first time at the ICRC 2021, it includes not only 10% of the data–raw and processed–from the different instruments of the Observatory, but also a visualisation tool, documentation to make the data user-friendly, and analyses codes that can be readily used and modified. Since 2021, the portal has been updated three times: new data, documentation, and codes have been added. Moreover, the portal has become dual, with one part dedicated to scientists and the other to educational users. Furthermore, a catalog containing details of the 100 highest-energy cosmic rays has been included. At this conference we will discuss these new features, as well as our intentions for the future. We will also share our approach and methods for making data public and understandable to external users,
from simplifying the data structure to translating codes from in-house computing architecture into popular available software. Ključne besede: Pierre Auger Observatory, ultra-high energy cosmic rays, portals to data Objavljeno v RUNG: 24.01.2024; Ogledov: 1846; Prenosov: 7 Celotno besedilo (2,23 MB) Gradivo ima več datotek! Več... |