1. Polysaccharide-based films and coatings for food packaging: A review.Patricia Cazón, Gonzalo Velazquez, Jose A. Ramirez, Manuel Vazquez, 2017, pregledni znanstveni članek Opis: The accumulation of synthetic plastics, mainly from food packaging, is causing a serious environmental problem. It is driving research efforts to the development of biodegradable films and coatings. The biopolymers used as raw material to prepare biodegradable films should be renewable, abundant and low-cost. In some cases, they can be obtained from wastes. This review summarizes the advances in polysaccharide-based films and coatings for food packaging. Among the materials studied to develop biodegradable packaging films and coatings are polysaccharides such as cellulose, chitosan, starch, pectin and alginate. These polysaccharides are able to form films and coatings with good barrier properties against the transport of gases such as oxygen and carbon dioxide. On the other hand, tensile strength and percentage of elongation are important mechanical properties. Desirable values of them are required to maintain the integrity of the packed food. The tensile strength values showed by polysaccharide-based films vary from each other, but some of them exhibit similar values to those observed in synthetic polymers values. For example, tensile strength values of films based on high amylose starch or chitosan are comparable to those values found in high-density polyethylene films. The values of percentage of elongation are the main concern, which are far from the desirable values found for synthetic polymers. Researchers are studying combinations of polysaccharides with other materials to improve the barrier and mechanical properties in order to obtain biopolymers that could replace synthetic polymers. Functional polymers with antimicrobial properties, as that the case of chitosan, are also being studied. Ključne besede: Cellulose, Chitosan, Starch, Water vapour permeability, Tensile strength, Percentage of elongation at break Objavljeno v RUNG: 14.12.2020; Ogledov: 3051; Prenosov: 0 Gradivo ima več datotek! Več... |
2. Novel composite films based on cellulose reinforced with chitosan and polyvinyl alcohol: Effect on mechanical properties and water vapour permeabilityPatricia Cazón, Manuel Vazquez, Gonzalo Velazquez, 2018, izvirni znanstveni članek Opis: Novel composite films were prepared by dissolving microcrystalline cellulose (3–5% w/w) in NaOH/urea solution, followed by coagulation in acetic acid solution. The regenerated cellulose films were immersed in chitosan-polyvinyl alcohol solutions at concentrations of 0–1% w/w and 0–4% w/w, respectively. Tensile strength, percentage of elongation at break, Young's modulus and water vapour permeability were measured to assess the effect of each compound on the mechanical and barrier properties. Polynomial models were obtained to evaluate the effect of the formulation on the measured properties. The microstructure was analysed by scanning electron microscopy. Results showed tensile strength values in the range 27.75–78.48 MPa, similar to usual synthetic polymer films. Percentage of elongation at break ranged from 0.98 to 12.82%, increasing when polyvinyl alcohol and chitosan increased. Young's modulus ranged from 2727.04 to 4217.25 MPa, showing higher values than pure chitosan and polyvinyl alcohol films. The highest value was reached combining cellulose and polyvinyl alcohol without chitosan. The water vapour permeability (1.78·10−11-4.24·10−11 g/m s Pa) showed 2 orders of magnitude higher than that of synthetic polymers, but lower than pure chitosan and polyvinyl alcohol films. Results showed that it is feasible to obtain cellulose-chitosan-polyvinyl alcohol composite films with improved mechanical properties and water vapour permeability. Ključne besede: Regenerated cellulose, Tensile strength, Elongation at break, Young's modulus, Water vapour permeability Objavljeno v RUNG: 14.12.2020; Ogledov: 2974; Prenosov: 0 Gradivo ima več datotek! Več... |
3. Regenerated cellulose films combined with glycerol and polyvinyl alcohol: Effect of moisture content on the physical propertiesPatricia Cazón, Gonzalo Velazquez, Manuel Vazquez, 2020, izvirni znanstveni članek Opis: Regenerated cellulose-based films combined with glycerol and polyvinyl alcohol (PVOH) show interesting UV- light barrier properties, with potential application in food packaging to prevent oxidative deterioration. How- ever, these materials are sensitive to moisture, and their properties could be modified as a function of the relative humidity. Hence, the objective of the present work was to evaluate the changes in the main properties of re- generated cellulose-glycerol-PVOH films depending on the relative humidity. Using the GAB adsorption iso- therms, the moisture content was related with the water activity of the films at several relative humidity conditions. According to the obtained results, water molecules manifested a plasticizing effect modifying the mechanical, water vapour permeability and optical properties of the developed films. Tensile strength and Young’s modulus values ranged from 92.65 to 17.57 MPa and from 3639.09 to 227.89 MPa, respectively. Both of them decreased when the moisture content increased. The mechanical resistance to deformation of films enhanced at high moisture content, changing from 5.88 to 15.97% and from 0.59 to 2.97 mm in the tensile and puncture test, respectively. This effect was also observed for the burst strength. Water vapour permeability increased from 5.15⋅10?10 to 5.44⋅10?9 g/ms Pa when the moisture content increased, being more significative at higher values. No significant variations were observed in the UV-VIS transmittance at different moisture contents. The obtained results allow expanding the knowledge of the behavior of films based on regenerated cellulose. Ključne besede: Adsorption isotherms, Plasticization, Regenerated cellulose, Water vapour permeability, Moisture content Objavljeno v RUNG: 09.12.2020; Ogledov: 3184; Prenosov: 0 Gradivo ima več datotek! Več... |
4. Regenerated cellulose films with chitosan and polyvinyl alcohol: Effect of the moisture content on the barrier, mechanical and optical propertiesPatricia Cazón, Manuel Vazquez, Gonzalo Velazquez, 2020, izvirni znanstveni članek Opis: The aim of this research was to evaluate the effect of moisture content on the mechanical, barrier and optical properties of films obtained from regenerated cellulose with chitosan and polyvinyl alcohol equilibrated at several relative humidity conditions. The experimental moisture adsorption isotherms were fitted using the Guggenheim-Anderson-DeBoer model. The adsorption isotherm showed a typical type II sigmoidal shape. The highest moisture content (27.53 %) was obtained at a water activity of 0.9. The water vapour permeability values increased up to 6.34·10−11 g/ m s Pa as the moisture content of the films increased. Tensile strength, percentage of elongation, Young’s modulus, burst strength and distance to burst showed a significant plasticizing effect of the water molecules. Results suggest that interactions between film components and water molecules decrease the transmittance in the UV region and the transparency. Consequently, water molecules improve the UV-barrier properties of the films and increasing the opacity. Ključne besede: Adsorption isotherms, Plasticization, Regenerated cellulose, Chitosan, Polyvinyl alcohol, Water vapour permeability, Moisture content Objavljeno v RUNG: 09.12.2020; Ogledov: 3415; Prenosov: 0 Gradivo ima več datotek! Več... |