Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


21 - 30 / 62
Na začetekNa prejšnjo stran1234567Na naslednjo stranNa konec
21.
Through-plane and in-plane thermal diffusivity determination of graphene nanoplatelets by photothermal beam deflection spectrometry
Humberto Cabrera, Dorota Korte, Hanna Budasheva, Behnaz Abbasgholi N. Asbaghi, Stefano Bellucci, 2021, izvirni znanstveni članek

Opis: In this work, in-plane and through-plane thermal diffusivities and conductivities of a freestanding sheet of graphene nanoplatelets are determined using photothermal beam deflection spectrometry. Two experimental methods were employed in order to observe the effect of load pressures on the thermal diffusivity and conductivity of the materials. The in-plane thermal diffusivity was determined by the use of a slope method supported by a new theoretical model, whereas the through-plane thermal diffusivity was determined by a frequency scan method in which the obtained data were processed with a specifically developed least-squares data processing algorithm. On the basis of the determined values, the in-plane and through-plane thermal conductivities and their dependences on the values of thermal diffusivity were found. The results show a significant difference in the character of thermal parameter dependence between the two methods. In the case of the in-plane configuration of the experimental setup, the thermal conductivity decreases with the increase in thermal diffusivity, whereas with the through-plane variant, the thermal conductivity increases with an increase in thermal diffusivity for the whole range of the loading pressure used. This behavior is due to the dependence of heat propagation on changes introduced in the graphene nano-platelets structure by compression.
Ključne besede: graphene nanoplatelets, thermal diffusivity, thermal conductivity, photothermal spectrometry
Objavljeno v RUNG: 30.11.2021; Ogledov: 1874; Prenosov: 66
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

22.
23.
24.
Chemical (in)stability of interfaces between different metals and Bi[sub]2Se[sub]3 topological insulator
Katja Ferfolja, Mattia Fanetti, Sandra Gardonio, Matjaž Valant, 2018, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: In recent years a classification of materials based on their topological order gained popularity due to the discovery of materials with special topological character – topological insulators (TI). TI have different band structure than regular insulators or conductors. They are characterized by a band gap in the bulk of the material, but at the surface they possess conductive topological surface states (TSS) that cross the Fermi level. TSS are a consequence of the non-trivial bulk band structure and have properties that differ from ordinary surface states. They are robust toward contamination and deformation of the surface. Additionally, they are also spin polarized, which means that an electron spin is locked to a crystal momentum and, therefore, backscattering during transport is suppressed [1]. Due to their specific properties the TI could be used in fields of spintronics, quantum computing and catalysis [2]. The investigation of the interfaces between metals and the TI has not been given much attention even though its characterization is interesting from fundamental physics and applicative point of view. (In)stability of the contacts with metal electrodes, in a form of a chemical reaction or diffusion, has to be taken into account since it can affect the transport properties of the material or increase the contact resistance. Our research is dedicated to the study of the metal/TI interfaces, in particular to Bi2Se3 with deposited metals that are relevant for electrical contacts (Au, Ag, Pt, Cr, Ti). The thermal and chemical stability of the interfaces are of fundamental importance for understanding the contact behavior, therefore, we focused our work to the characterization of these properties. The metal/TI interfaces are investigated mainly with an electron microscopy (SEM, TEM, STM), EDX microanalysis and XRD. Our previous studies showed that the interface between Bi2Se3, and Ag deposited either chemically or from a vapor phase, results in the formation of new phases already at room temperature [3]. On the contrary, Au deposited on the Bi2Se3 surface shows very limited reactivity and is stable at RT, but diffusion and coalescence of the metal are observed starting from 100 °C [4]. In this contribution, we will present further characterization on the evolution of the Ag/Bi2Se3 and Au/Bi2Se3 interfaces, show preliminary results about recently investigated systems (Pt/Bi2Se3, Ti/Bi2Se3) and compare the thermal and chemical stability of the systems under investigation.
Ključne besede: thermal lens spectrometry, photothermal beam deflection spectroscopy, dye remediation, photothermal technique, photocatalytic degradation, reactive blue 19, TiO2 modification
Objavljeno v RUNG: 20.08.2021; Ogledov: 2304; Prenosov: 0
Gradivo ima več datotek! Več...

25.
Molekularna karakterizacija lebdećih čestica slobodne troposfere sa Opservatorija Pico planine
Katja Džepina, Claudio Mazzoleni, Paulo Fialho, Swarup China, B. Zhang, R. Chris Owen, D. Helmig, J. Hueber, Sumit Kumar, J. A. Perlinger, 2017, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: Long-range transported free tropospheric aerosol was sampled at the PMO (38°28’15’’N, 28°24’14’’W; 2225 m amsl) on Pico Island of the Azores in the North Atlantic. Filter-collected aerosol during summer 2012 was analysed for organic and elemental carbon, and inorganic ions. The average aerosol ambient concentration was 0.9 µg m-3. Organic aerosol contributed the majority of mass (57%), followed by sulphate (21%) and nitrate (17%). Filter-collected aerosol was positively correlated with on-line aerosol measurements of black carbon, light scattering and number concentration. Water-soluble organic compounds (WSOC) from 9/24 and 9/25 samples collected during a pollution event were analysed with ultrahigh-resolution FT-ICR MS. FLEXPART analysis showed the air masses were very aged (>12 days). ~4000 molecular formulas were assigned to each of the mass spectra between m/z 100-1000. The majority of the assigned molecular formulas have unsaturated structures with CHO and CHNO elemental compositions. WSOC have an average O/C of ~0.45, relatively low compared to O/C of other aged aerosol, which might be the result of evaporation and fragmentation during long-range transport. The increase in aerosol loading during 9/24 was linked to biomass burning emissions from North America by FLEXPART and MODIS fire counts. This was confirmed with WSOC biomass burning markers and with the morphology and mixing state of particles as determined by SEM. The presence of markers characteristic of aqueous-phase reactions of biomass burning phenolic species suggests that the aerosol collected at Pico had undergone cloud processing. The air masses on 9/25 were more aged (~15 days) and influenced by marine emissions, as indicated by organosulphates and species characteristic for marine aerosol (e.g. fatty acids). The change in air masses for the two samples was corroborated by the changes in ozone, ethane, propane, morphology of particles, as well as by FLEXPART. In this presentation we will presents the first detailed molecular characterization of free tropospheric aged aerosol intercepted at the PMO.
Ključne besede: Atmospheric aerosol, Free troposphere, Mass spectrometry, Pico mountain observatory
Objavljeno v RUNG: 26.05.2021; Ogledov: 2715; Prenosov: 0
Gradivo ima več datotek! Več...

26.
27.
28.
Evaluation of recently-proposed secondary organic aerosol models for a case study in Mexico City
Katja Džepina, R. M. Volkamer, Sasha Madronich, P. Tulet, I. M. Ulbrich, Q. Zhang, C. D. Cappa, P. J. Ziemann, Jose L. Jimenez, 2009, izvirni znanstveni članek

Opis: Recent field studies have found large discrepancies in the measured vs. modeled SOA mass loadings in both urban and regional polluted atmospheres. The reasons for these large differences are unclear. Here we revisit a case study of SOA formation in Mexico City described by Volkamer et al. (2006), during a photochemically active period when the impact of regional biomass burning is minor or negligible, and show that the observed increase in OA/Delta CO is consistent with results from several groups during MILAGRO 2006. Then we use the case study to evaluate three new SOA models: 1) the update of aromatic SOA yields from recent chamber experiments (Ng et al., 2007); 2) the formation of SOA from glyoxal (Volkamer et al., 2007a); and 3) the formation of SOA from primary semivolatile and intermediate volatility species (P-S/IVOC) (Robinson et al., 2007). We also evaluate the effect of reduced partitioning of SOA into POA (Song et al., 2007). Traditional SOA precursors (mainly aromatics) by themselves still fail to produce enough SOA to match the observations by a factor of similar to similar to 7. The new low-NOx aromatic pathways with very high SOA yields make a very small contribution in this high-NOx urban environment as the RO2 center dot+NO reaction dominates the fate of the RO2 center dot radicals. Glyoxal contributes several mu g m(-3) to SOA formation, with similar timing as the measurements. P-S/IVOC are estimated from equilibrium with emitted POA, and introduce a large amount of gas-phase oxidizable carbon that was not in models before. With the formulation in Robinson et al. (2007) these species have a high SOA yield, and this mechanism can close the gap in SOA mass between measurements and models in our case study. However the volatility of SOA produced in the model is too high and the O/C ratio is somewhat lower than observations. Glyoxal SOA helps to bring the O/C ratio of predicted and observed SOA into better agreement. The sensitivities of the model to some key uncertain parameters are evaluated.
Ključne besede: polycyclic aromatic-hydrocarbons, positive matrix factorization, mass-spectrometry, volatility measurements
Objavljeno v RUNG: 11.04.2021; Ogledov: 2116; Prenosov: 0
Gradivo ima več datotek! Več...

29.
Implementation of high performance liquid chromatography coupled to thermal lens spectrometry (HPLC‑TLS) for quantification of pyranoanthocyanins during fermentation of Pinot Noir grapes
Jelena Topič Božič, Lorena Butinar, Natka Ćurko, Karin Kovačević Ganić, Branka Mozetič Vodopivec, Dorota Korte, Mladen Franko, 2020, izvirni znanstveni članek

Opis: In this work high performance liquid chromatography coupled to thermal lens spectrometry (HPLC-TLS) was applied for monitoring of vinylphenolic pyranoanthocyanins formation during the fermentation of Pinot Noir wines. Vinylphenolic pyranoanthocyanins are wine pigments, present in low concentrations, but very important for wine colour stability. Fermentation process was conducted with four different yeast strains, used as starters, either in sequential fermentation of non-Saccharomyces with S. cerevisiae yeast or as single fermentation with S. cerevisiae yeasts in order to test the applicability of developed method for monitoring of selected compounds in real wine fermentation experiments. The developed HPLC-TLS method showed higher sensitivity compared to HPLC coupled to diode array detection (DAD) technique for particular wine colour compounds. Obtained limits of detection (LODs), were 6- and 22-times lower in comparison to HPLC–DAD in gradient and isocratic elution mode, respectively, whereas limits of quantification (LOQs) 5 and 18-times lower. Lower LODs enabled earlier observation of vinylphenolic pyranoanthocyanins formation during fermentation (already at day 7) in the case of HPLC-TLS method in gradient mode, while by using HPLC–DAD in gradient elution mode the formation of vinylphenolic pyranoanthocyanins was noticed only after 12 days of fermentation.
Ključne besede: Thermal lens spectrometry (TLS), High performance liquid chromatography (HPLC), Pyranoanthocyanins, Wine, Yeasts
Objavljeno v RUNG: 18.06.2020; Ogledov: 3349; Prenosov: 0
Gradivo ima več datotek! Več...

30.
Mineral element composition in grain of awned and awnletted wheat (Triticum aestivum L.) cultivars tissue-specific iron speciation and phytate and non-phytate ligand ratio
Paula Pongrac, Iztok Arčon, Hiram Castillo Michel, Katarina Vogel-Mikuš, 2020, izvirni znanstveni članek

Opis: In wheat (Triticum aestivum L.), the awns—the bristle-like structures extending from lemmas—are photosynthetically active. Compared to awned cultivars, awnletted cultivars produce more grains per unit area and per spike, resulting in significant reduction in grain size, but their mineral element composition remains unstudied. Nine awned and 11 awnletted cultivars were grown simultaneously in the field. With no difference in 1000-grain weight, a larger calcium and manganese—but smaller iron (Fe) concentrations—were found in whole grain of awned than in awnletted cultivars. Micro X-ray absorption near edge structure analysis of different tissues of frozen-hydrated grain cross-sections revealed that differences in total Fe concentration were not accompanied by differences in Fe speciation (64% of Fe existed as ferric and 36% as ferrous species) or Fe ligands (53% were phytate and 47% were non-phytate ligands). In contrast, there was a distinct tissue-specificity with pericarp containing the largest proportion (86%) of ferric species and nucellar projection (49%) the smallest. Phytate ligand was predominant in aleurone, scutellum and embryo (72%, 70%, and 56%, respectively), while nucellar projection and pericarp contained only non-phytate ligands. Assuming Fe bioavailability depends on Fe ligands, we conclude that Fe bioavailability from wheat grain is tissue specific.
Ključne besede: biofortification, phytate, iron, awn, X-ray fluorescence, X-ray absorption spectrometry, phosphorus, sulphur, nicotianamine
Objavljeno v RUNG: 16.01.2020; Ogledov: 2917; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh