1. Iodine K- and L-edge X-ray absorption spectra of HI : the effect of molecular orbitals and core subshellsRobert Hauko, Jana Padežnik Gomilšek, Alojz Kodre, Iztok Arčon, Uroš Luin, 2024, original scientific article Abstract: Analysis of the recently measured absorption spectra of molecular HI at K and L edges of iodine, in parallel with
previously measured spectra of noble gas Xe and the K edge spectrum of atomic I, is presented. A strong
dependence of some valence multielectron photoexcitation features on the orbital momentum of the core vacancy
is found, attributed to the change of the symmetry of the HI molecule: the shake-up coexcitation of a
valence electron to a free molecular orbital is much stronger at L3 than L1 edge. The effect of angular momentum
of the core hole on the shake processes of deeper multielectron photoexcitations is found negligible. Both HI and
Xe exhibit a much weaker one-electron transition [1s]6p than monatomic I. At the K edge, the strength of
coexcitations of 4d, 4p and 3d subshells in atomic I is close to the HI and Xe. The same is found for HI and Xe at
the L edges, due to a weak contribution of the additional free molecular orbital in HI. Keywords: X-ray absorption spectroscopy, K edge spectrum of atomic I, multielectron photoexcitations (MEPE), core vacancy angular momentum Published in RUNG: 09.01.2025; Views: 179; Downloads: 2
Link to file This document has many files! More... |
2. A European aerosol phenomenology - 9 : light absorption properties of carbonaceous aerosol particles across surface EuropeJordi Rovira, Marjan Savadkoohi, Gang I. Chen, Griša Močnik, Wenche Aas, Lucas Alados-Arboledas, B. Artíñano, Asta Gregorič, Matic Ivančič, Jesús Yus-Díez, 2024, original scientific article Abstract: Carbonaceous aerosols (CA), composed of black carbon (BC) and organic matter (OM), significantly impact the climate. Light absorption properties of CA, particularly of BC and brown carbon (BrC), are crucial due to their contribution to global and regional warming. We present the absorption properties of BC (bAbs,BC) and BrC (bAbs,BrC) inferred using Aethalometer data from 44 European sites covering different environments (traffic (TR), urban (UB), suburban (SUB), regional background (RB) and mountain (M)). Absorption coefficients showed a clear relationship with station setting decreasing as follows: TR > UB > SUB > RB > M, with exceptions. The contribution of bAbs,BrC to total absorption (bAbs), i.e. %AbsBrC, was lower at traffic sites (11–20 %), exceeding 30 % at some SUB and RB sites. Low AAE values were observed at TR sites, due to the dominance of internal combustion emissions, and at some remote RB/M sites, likely due to the lack of proximity to BrC sources, insufficient secondary processes generating BrC or the effect of photobleaching during transport. Higher bAbs and AAE were observed in Central/Eastern Europe compared to Western/Northern Europe, due to higher coal and biomass burning emissions in the east. Seasonal analysis showed increased bAbs, bAbs,BC, bAbs,BrC in winter, with stronger %AbsBrC, leading to higher AAE. Diel cycles of bAbs,BC peaked during morning and evening rush hours, whereas bAbs,BrC, %AbsBrC, AAE, and AAEBrC peaked at night when emissions from household activities accumulated. Decade-long trends analyses demonstrated a decrease in bAbs, due to reduction of BC emissions, while bAbs,BrC and AAE increased, suggesting a shift in CA composition, with a relative increase in BrC over BC. This study provides a unique dataset to assess the BrC effects on climate and confirms that BrC can contribute significantly to UV–VIS radiation presenting highly variable absorption properties in Europe. Keywords: aerosol absorption, black carbon, brown carbon, climate change, air pollution Published in RUNG: 10.12.2024; Views: 316; Downloads: 4
Full text (4,31 MB) This document has many files! More... |
3. Atmospheric black carbon in the metropolitan area of La Paz and El Alto, Bolivia: concentration levels and emission sourcesValeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin L. Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, 2024, original scientific article Abstract: Abstract. Black carbon (BC) is a major component of submicron particulate matter (PM), with significant health and climate impacts. Many cities in emerging countries lack comprehensive knowledge about BC emissions and exposure levels. This study investigates BC concentration levels, identifies its emission sources, and characterizes the optical properties of BC at urban background sites of the two largest high-altitude Bolivian cities: La Paz (LP) (3600 m above sea level) and El Alto (EA) (4050 m a.s.l.), where atmospheric oxygen levels and intense radiation may affect BC production. The study relies on concurrent measurements of equivalent black carbon (eBC), elemental carbon (EC), and refractory black carbon (rBC) and their comparison with analogous data collected at the nearby Chacaltaya Global Atmosphere Watch Station (5240 m a.s.l). The performance of two independent source apportionment techniques was compared: a bilinear model and a least-squares multilinear regression (MLR). Maximum eBC concentrations were observed during the local dry season (LP: eBC = 1.5 ± 1.6 µg m−3; EA: 1.9±2.0 µg m−3). While eBC concentrations are lower at the mountain station, daily transport from urban areas is evident. Average mass absorption cross sections of 6.6–8.2 m2 g−1 were found in the urban area at 637 nm. Both source apportionment methods exhibited a reasonable level of agreement in the contribution of biomass burning (BB) to absorption. The MLR method allowed the estimation of the contribution and the source-specific optical properties for multiple sources, including open waste burning. Keywords: black carbon, aerosol absorption, source apportionment, mass absorption cross-section Published in RUNG: 29.10.2024; Views: 497; Downloads: 0
Full text (3,35 MB) This document has many files! More... |
4. GasesAlojz Kodre, Iztok Arčon, Jana Padežnik Gomilšek, 2024, scientific entry in dictionary, encyclopaedia or lexicon Abstract: X-ray absorption spectroscopy of gases is seldom used for structural analysis,
except in as much as the extended X-ray absorption fine-structure (EXAFS)
signal is used to monitor some specific molecular process. Gas spectroscopy,
however, has been the main tool in the systematic study of higher-order
photoabsorption processes, multielectron photoexcitations (MEEs), which were
introduced with an experiment at the K edge of argon. Along with noble gases,
where MEEs are studied in the pure form, free of the structural signal,
measurements have been extended to monatomic metal vapours, although at the
cost of considerable experimental difficulties. Several types of absorption cells
have been devised, among them the ceramic double cell and the heat-pipe cell
for experiments in the low-energy region. In a high-temperature oven with
considerable technical refinement, edge profiles of nonvolatile metals were
measured up to 2500 K. Edge profiles and MEEs, which are strongly dependent
on electron correlation, provide sensitive tests of the theory of atomic and
molecular structure. Keywords: X-ray absorption spectroscopy, absorption cells, gas and vapour samples, multielectron photoexcitation, effects of electron
correlation Published in RUNG: 05.09.2024; Views: 794; Downloads: 4
Link to file This document has many files! More... |
5. Applicability of benchtop multi-wavelength polar photometers to off-line measurements of the Multi-Angle Absorption Photometer (MAAP) samplesSara Valentini, Vera Bernardoni, Ezio Bolzacchini, Davide Ciniglia, Luca Ferrero, Alice Corina Forello, Dario Massabò, Marco Pandolfi, Paolo Prati, Jesús Yus-Díez, 2021, original scientific article Keywords: aerosol absorption coefficient, equivalent black carbon, MAAP, polar photometer, multi-wavelength Published in RUNG: 13.05.2024; Views: 1044; Downloads: 2
Link to file This document has many files! More... |
6. Optical properties of near-surface urban aerosols and their chemical tracing in a Mediterranean city (Athens)Dimitris Katsanos, Aikaterini Bougiatioti, Eleni Liakakou, Dimitris G. Kaskaoutis, Iasonas Stavroulas, D. Paraskevopoulou, Maria Lianou, Basil E. Psiloglou, Evangelos Gerasopoulos, Christodoulos Pilinis, 2019, original scientific article Abstract: One-year measurements (October 2016–September 2017) of aerosol optical properties in the Athens urban environment were analyzed; for closure purposes, the results were supported by data of chemical composition of the non-refractory submicron aerosol fraction acquired with an Aerosol Chemical Speciation Monitor (ACSM). Both the spectral scattering (bsca) and absorption (babs) coefficients exhibit a pronounced annual variability with higher values (63.6 Mm–1 at 550 nm and 41.0 Mm–1 at 520 nm, respectively) in winter, due to domestic heating releasing increased carbonaceous emissions and the shallow mixing layer trapping aerosols near the surface. Much lower values (33.5 Mm–1 and 22.9 Mm–1 for bsca and babs, respectively) are found during summer, indicating rather aged aerosols from regional sources. The estimations of the dry spectral single scattering albedo (SSA), scattering (SAE) and absorption (AAE) Ångström exponents focus on the seasonality of the urban aerosols. The high SAE (~2.0) and low SSA (0.62 ± 0.11) values throughout the year indicate the dominance of fine-absorbing aerosols from fossil-fuel combustion, while the high AAE (~1.5) in winter suggests enhanced presence of biomass-burning aerosols. Pronounced morning and late evening/night peaks are found in both bsca and babs during winter, coinciding with the morning traffic rush hour and increased residential wood burning in the evening, while in the other seasons, the diurnal patterns flatten out. The wind speed strongly affects the aerosol loading and properties in winter, since for winds below 3 m s–1, a high increase in bsca and babs is observed, consistent with low dilution processes and hazy/smoggy conditions. Our closure experiments indicate a good agreement (R2 = 0.91, slope = 1.08) between the reconstructed and measured bsca values and reveal that organic matter contributes about half of the sub-micron mass in winter, followed by sulfate (~40%) and nitrate (10%, only in winter) aerosols. Keywords: urban aerosols, light scattering, absorption, chemical species, wood burning, Athens Published in RUNG: 10.05.2024; Views: 1038; Downloads: 5
Full text (1,36 MB) This document has many files! More... |
7. Long-term brown carbon spectral characteristics in a Mediterranean city (Athens)Eleni Liakakou, Dimitris G. Kaskaoutis, Georgios Grivas, Iasonas Stavroulas, M. Tsagkaraki, D. Paraskevopoulou, Aikaterini Bougiatioti, Umesh Chandra Dumka, Evangelos Gerasopoulos, Nikolaos Mihalopoulos, 2020, original scientific article Abstract: This study analyses 4-years of continuous 7-λ Aethalometer (AE-33) measurements in an urban-background environment of Athens, to resolve the spectral absorption coefficients (babs) for black carbon (BC) and brown carbon (BrC). An important BrC contribution (23.7 ± 11.6%) to the total babs at 370 nm is estimated for the period May 2015–April 2019, characterized by a remarkable seasonality with winter maximum (33.5 ± 13.6%) and summer minimum (18.5 ± 8.1%), while at longer wavelengths the BrC contribution is significantly reduced (6.8 ± 3.6% at 660 nm). The wavelength dependence of the total babs gives an annual-mean AAE370-880 of 1.31, with higher values in winter night-time. The BrC absorption and its contribution to babs presents a large increase reaching up to 39.1 ± 13.6% during winter nights (370 nm), suggesting residential wood burning (RWB) emissions as a dominant source for BrC. This is supported by strong correlations of the BrC absorption with OC, EC, the fragment ion m/z 60 derived from ACSM and PMF-analyzed organic fractions related to biomass burning (e.g. BBOA). In contrast, BrC absorption decreases significantly during daytime as well as in the warm period, reaching to a minimum during the early-afternoon hours in all seasons due to photo-chemical degradation. Estimated secondary BrC absorption is practically evident only during winter night-time, implying the fast oxidation of BrC species from RWB emissions. Changes in mixing-layer height do not significantly affect the BrC absorption in winter, while they play a major role in summer. Keywords: spectral aerosol absorption, brown carbon, wood burning, organic aerosols, chemical composition, Athens Published in RUNG: 10.05.2024; Views: 1360; Downloads: 2
Link to file |
8. Absorption enhancement of black carbon particles in a Mediterranean city and countryside : effect of particulate matter chemistry, ageing and trend analysisJesús Yus-Díez, Marta Via, Andrés Alastuey, Angeliki Karanasiou, Maria Cruz Minguillon, Noemí Perez, Xavier Querol, Cristina Reche, Matic Ivančič, Martin Rigler, 2022, original scientific article Abstract: Abstract. Black carbon (BC) is recognized as the most important warming agent among atmospheric aerosol particles. The absorption efficiency of pure BC is rather well-known, nevertheless the mixing of BC with other aerosol particles can enhance the BC light absorption efficiency, thus directly affecting Earth's radiative balance. The effects on climate of the BC absorption enhancement due to the mixing with these aerosols are not yet well constrained because these effects depend on the availability of material for mixing with BC, thus creating regional variations. Here we present the mass absorption cross-section (MAC) and absorption enhancement of BC particles (Eabs), at different wavelengths (from 370 to 880 nm for online measurements and at 637 nm for offline measurements) measured at two sites in the western Mediterranean, namely Barcelona (BCN; urban background) and Montseny (MSY; regional background). The Eabs values ranged between 1.24 and 1.51 at the urban station, depending on the season and wavelength used as well as on the pure BC MAC used as a reference. The largest contribution to Eabs was due to the internal mixing of BC particles with other aerosol compounds, on average between a 91 % and a 100 % at 370 and 880 nm, respectively. Additionally, 14.5 % and 4.6 % of the total enhancement at the short ultraviolet (UV) wavelength (370 nm) was due to externally mixed brown carbon (BrC) particles during the cold and the warm period, respectively. On average, at the MSY station, a higher Eabs value was observed (1.83 at 637 nm) compared to BCN (1.37 at 637 nm), which was associated with the higher fraction of organic aerosols (OA) available for BC coating at the regional station, as denoted by the higher organic carbon to elemental carbon (OC:EC) ratio observed at MSY compared to BCN. At both BCN and MSY, Eabs showed an exponential increase with the amount of non-refractory (NR) material available for coating (RNR-PM). The Eabs at 637 nm at the MSY regional station reached values up to 3 during episodes with high RNR-PM, whereas in BCN, Eabs kept values lower than 2 due to the lower relative amount of coating materials measured at BCN compared to MSY. The main sources of OA influencing Eabs throughout the year were hydrocarbon OA (HOA) and cooking-related OA (COA), i.e. primary OA (POA) from traffic and cooking emissions, respectively, at both 370 and 880 nm. At the short UV wavelength (370 nm), a strong contribution to Eabs from biomass burning OA (BBOA) and less oxidized oxygenated OA (LO-OOA) sources was observed in the colder period. Moreover, we found an increase of Eabs with the ageing state of the particles, especially during the colder period. This increase of Eabs with particle ageing was associated with a larger relative amount of secondary OA (SOA) compared to POA. The availability of a long dataset at both stations from offline measurements enabled a decade-long trend analysis of Eabs at 637 nm, that showed statistically significant (s.s.) positive trends of Eabs during the warmer months at the MSY station. This s.s. positive trend in MSY mirrored the observed increase of the OC:EC ratio over time. Moreover, in BCN during the COVID-19 lockdown period in spring 2020 we observed a sharp increase of Eabs due to the observed sharp increase of the OC:EC ratio. Our results show similar values of Eabs to those found in the literature for similar background stations. Keywords: black carbomn, coating, organic aerosol, light absorption Published in RUNG: 10.05.2024; Views: 1179; Downloads: 5
Full text (2,74 MB) This document has many files! More... |
9. Assessment of the COVID-19 lockdown effects on spectral aerosol scattering and absorption properties in Athens, GreeceDimitris G. Kaskaoutis, Georgios Grivas, Eleni Liakakou, Nikos Kalivitis, Giorgos Kouvarakis, Iasonas Stavroulas, Panayiotis Kalkavouras, Pavlos Zarmpas, Umesh Chandra Dumka, Evangelos Gerasopoulos, Nikolaos Mihalopoulos, 2021, original scientific article Abstract: COVID-19 is evolving into one of the worst pandemics in recent history, claiming a death toll of over 1.5 million as of December 2020. In an attempt to limit the expansion of the pandemic in its initial phase, nearly all countries imposed restriction measures, which resulted in an unprecedented reduction of air pollution. This study aims to assess the impact of the lockdown effects due to COVID-19 on in situ measured aerosol properties, namely spectral-scattering (bsca) and absorption (babs) coefficients, black carbon (BC) concentrations, single-scattering albedo (SSA), scattering and absorption Ångström exponents (SAE, AAE) in Athens, Greece. Moreover, a comparison is performed with the regional background site of Finokalia, Crete, for a better assessment of the urban impact on observed differences. The study examines pre-lockdown (1–22 March 2020), lockdown (23 March–3 May 2020) and post-lockdown (4–31 May 2020) periods, while the aerosol properties are also compared with a 3–4 year preceding period (2016/2017–2019). Comparison of meteorological parameters in Athens, between the lockdown period and respective days in previous years, showed only marginal variation, which is not deemed sufficient in order to justify the notable changes in aerosol concentrations and optical properties. The largest reduction during the lockdown period was observed for babs compared to the pre-lockdown (−39%) and to the same period in previous years (−36%). This was intensified during the morning traffic hours (−60%), reflecting the large decrease in vehicular emissions. Furthermore, AAE increased during the lockdown period due to reduced emissions from fossil-fuel combustion, while a smaller (−21%) decrease was observed for bsca along with slight increases (6%) in SAE and SSA values, indicating that scattering aerosol properties were less affected by the decrease in vehicular emissions, as they are more dependent on regional sources and atmospheric processing. Nighttime BC emissions related to residential wood-burning were slightly increased during the lockdown period, with respect to previous-year means. On the contrary, aerosol and pollution changes during the lockdown period at Finokalia were low and highly sensitive to natural sources and processes. Keywords: COVID-19, traffic, aerosol scattering, absorption, SSA, Greece Published in RUNG: 10.05.2024; Views: 1014; Downloads: 5
Full text (8,69 MB) This document has many files! More... |
10. Apportionment of black and brown carbon spectral absorption sources in the urban environment of Athens, Greece, during winterDimitris G. Kaskaoutis, Georgios Grivas, Iasonas Stavroulas, Aikaterini Bougiatioti, Eleni Liakakou, Umesh Chandra Dumka, Evangelos Gerasopoulos, Nikolaos Mihalopoulos, 2021, original scientific article Abstract: This study examines the spectral properties and source characteristics of absorbing aerosols (BC: Black Carbon; BrC: Brown Carbon, based on aethalometer measurements) in the urban background of Athens during December 2016–February 2017. Using common assumptions regarding the spectral dependence of absorption due to BC (AAEBC = 1) and biomass burning (AAEbb = 2), and calculating an optimal AAEff value for the dataset (1.18), the total spectral absorption was decomposed into five components, corresponding to absorption of BC and BrC from fossil-fuel (ff) combustion and biomass burning (bb), and to secondary BrC estimated using the BC-tracer minimum R-squared (MRS) method. Substantial differences in the contribution of various components to the total absorption were found between day and night, due to differences in emissions and meteorological dynamics, while BrC and biomass burning aerosols presented higher contributions at shorter wavelengths. At 370 nm, the absorption due to BCff contributed 36.3% on average, exhibiting a higher fraction (58.1%) during daytime, while the mean BCbb absorption was estimated at 18.4%. The mean absorption contributions due to BrCff, BrCbb and BrCsec were 6.7%, 32.3% and 4.9%, respectively. The AbsBCff,370 component maximized during the morning traffic hours and was strongly correlated with NOx (R2 = 0.76) and CO (R2 = 0.77), while a similar behavior was seen for the AbsBrCff,370 component. AbsBCbb and AbsBrCbb levels escalated during nighttime and were highly associated with nss-K+ and with the organic aerosol (OA) components related to fresh and fast-oxidized biomass burning (BBOA and SV-OOA) as obtained from ACSM measurements. Multiple linear regression was used to attribute BrC absorption to five OA components and to determine their absorption contributions and efficiencies, revealing maximum contributions of BBOA (33%) and SV-OOA (21%). Sensitivity analysis was performed in view of the methodological uncertainties and supported the reliability of the results, which can have important implications for radiative transfer models. Keywords: spectral absorption, black carbon, brown carbon, fossil fuel, biomass burning, source apportionment Published in RUNG: 10.05.2024; Views: 1080; Downloads: 0 This document has many files! More... |