1. Optical properties of near-surface urban aerosols and their chemical tracing in a Mediterranean city (Athens)Dimitris Katsanos, Aikaterini Bougiatioti, Eleni Liakakou, Dimitris G. Kaskaoutis, Iasonas Stavroulas, D. Paraskevopoulou, Maria Lianou, Basil E. Psiloglou, Evangelos Gerasopoulos, Christodoulos Pilinis, 2019, original scientific article Abstract: One-year measurements (October 2016–September 2017) of aerosol optical properties in the Athens urban environment were analyzed; for closure purposes, the results were supported by data of chemical composition of the non-refractory submicron aerosol fraction acquired with an Aerosol Chemical Speciation Monitor (ACSM). Both the spectral scattering (bsca) and absorption (babs) coefficients exhibit a pronounced annual variability with higher values (63.6 Mm–1 at 550 nm and 41.0 Mm–1 at 520 nm, respectively) in winter, due to domestic heating releasing increased carbonaceous emissions and the shallow mixing layer trapping aerosols near the surface. Much lower values (33.5 Mm–1 and 22.9 Mm–1 for bsca and babs, respectively) are found during summer, indicating rather aged aerosols from regional sources. The estimations of the dry spectral single scattering albedo (SSA), scattering (SAE) and absorption (AAE) Ångström exponents focus on the seasonality of the urban aerosols. The high SAE (~2.0) and low SSA (0.62 ± 0.11) values throughout the year indicate the dominance of fine-absorbing aerosols from fossil-fuel combustion, while the high AAE (~1.5) in winter suggests enhanced presence of biomass-burning aerosols. Pronounced morning and late evening/night peaks are found in both bsca and babs during winter, coinciding with the morning traffic rush hour and increased residential wood burning in the evening, while in the other seasons, the diurnal patterns flatten out. The wind speed strongly affects the aerosol loading and properties in winter, since for winds below 3 m s–1, a high increase in bsca and babs is observed, consistent with low dilution processes and hazy/smoggy conditions. Our closure experiments indicate a good agreement (R2 = 0.91, slope = 1.08) between the reconstructed and measured bsca values and reveal that organic matter contributes about half of the sub-micron mass in winter, followed by sulfate (~40%) and nitrate (10%, only in winter) aerosols. Keywords: urban aerosols, light scattering, absorption, chemical species, wood burning, Athens Published in RUNG: 10.05.2024; Views: 1138; Downloads: 5
Full text (1,36 MB) This document has many files! More... |
2. Long-term brown carbon spectral characteristics in a Mediterranean city (Athens)Eleni Liakakou, Dimitris G. Kaskaoutis, Georgios Grivas, Iasonas Stavroulas, M. Tsagkaraki, D. Paraskevopoulou, Aikaterini Bougiatioti, Umesh Chandra Dumka, Evangelos Gerasopoulos, Nikolaos Mihalopoulos, 2020, original scientific article Abstract: This study analyses 4-years of continuous 7-λ Aethalometer (AE-33) measurements in an urban-background environment of Athens, to resolve the spectral absorption coefficients (babs) for black carbon (BC) and brown carbon (BrC). An important BrC contribution (23.7 ± 11.6%) to the total babs at 370 nm is estimated for the period May 2015–April 2019, characterized by a remarkable seasonality with winter maximum (33.5 ± 13.6%) and summer minimum (18.5 ± 8.1%), while at longer wavelengths the BrC contribution is significantly reduced (6.8 ± 3.6% at 660 nm). The wavelength dependence of the total babs gives an annual-mean AAE370-880 of 1.31, with higher values in winter night-time. The BrC absorption and its contribution to babs presents a large increase reaching up to 39.1 ± 13.6% during winter nights (370 nm), suggesting residential wood burning (RWB) emissions as a dominant source for BrC. This is supported by strong correlations of the BrC absorption with OC, EC, the fragment ion m/z 60 derived from ACSM and PMF-analyzed organic fractions related to biomass burning (e.g. BBOA). In contrast, BrC absorption decreases significantly during daytime as well as in the warm period, reaching to a minimum during the early-afternoon hours in all seasons due to photo-chemical degradation. Estimated secondary BrC absorption is practically evident only during winter night-time, implying the fast oxidation of BrC species from RWB emissions. Changes in mixing-layer height do not significantly affect the BrC absorption in winter, while they play a major role in summer. Keywords: spectral aerosol absorption, brown carbon, wood burning, organic aerosols, chemical composition, Athens Published in RUNG: 10.05.2024; Views: 1469; Downloads: 2
Link to file |
3. Carbonaceous aerosols in contrasting atmospheric environments in Greek cities : evaluation of the EC-tracer methods for secondary organic carbon estimationDimitris G. Kaskaoutis, Georgios Grivas, Christina Theodosi, M. Tsagkaraki, D. Paraskevopoulou, Iasonas Stavroulas, Eleni Liakakou, Antonis Gkikas, Nikolaos Hatzianastassiou, Cheng Wu, 2020, original scientific article Abstract: This study examines the carbonaceous-aerosol characteristics at three contrasting urban environments in Greece (Ioannina, Athens, and Heraklion), on the basis of 12 h sampling during winter (January to February 2013), aiming to explore the inter-site differences in atmospheric composition and carbonaceous-aerosol characteristics and sources. The winter-average organic carbon (OC) and elemental carbon (EC) concentrations in Ioannina were found to be 28.50 and 4.33 µg m−3, respectively, much higher than those in Heraklion (3.86 µg m−3 for OC and 2.29 µg m−3 for EC) and Athens (7.63 µg m−3 for OC and 2.44 µg m−3 for EC). The winter OC/EC ratio in Ioannina (6.53) was found to be almost three times that in Heraklion (2.03), indicating a larger impact of wood combustion, especially during the night, whereas in Heraklion, emissions from biomass burning were found to be less intense. Estimations of primary and secondary organic carbon (POC and SOC) using the EC-tracer method, and specifically its minimum R-squared (MRS) variant, revealed large differences between the sites, with a prevalence of POC (67–80%) in Ioannina and Athens and with a larger SOC fraction (53%) in Heraklion. SOC estimates were also obtained using the 5% and 25% percentiles of the OC/EC data to determine the (OC/EC)pri, leading to results contrasting to the MRS approach in Ioannina (70–74% for SOC). Although the MRS method provides generally more robust results, it may significantly underestimate SOC levels in environments highly burdened by biomass burning, as the fast-oxidized semi-volatile OC associated with combustion sources is classified in POC. Further analysis in Athens revealed that the difference in SOC estimates between the 5% percentile and MRS methods coincided with the semi-volatile oxygenated organic aerosol as quantified by aerosol mass spectrometry. Finally, the OC/Kbb+ ratio was used as tracer for decomposition of the POC into fossil-fuel and biomass-burning components, indicating the prevalence of biomass-burning POC, especially in Ioannina (77%). Keywords: carbonaceous aerosols, inorganic species, POC-SOC estimation, biomass burning, MRS method, Greece Published in RUNG: 10.05.2024; Views: 1025; Downloads: 7
Full text (2,64 MB) This document has many files! More... |
4. Impacts of severe residential wood burning on atmospheric processing, water-soluble organic aerosol and light absorption, in an inland city of Southeastern EuropeDimitris G. Kaskaoutis, Georgios Grivas, K. Oikonomou, P. Tavernaraki, Kyriaki Papoutsidaki, M. Tsagkaraki, Iasonas Stavroulas, Pavlos Zarmpas, D. Paraskevopoulou, Aikaterini Bougiatioti, 2022, original scientific article Abstract: This study examines the concentrations and characteristics of carbonaceous aerosols (including saccharides) and inorganic species measured by PM2.5 filter sampling and a multi-wavelength Aethalometer during two campaigns in a mountainous, medium-sized, Greek city (Ioannina). The first campaign was conducted in summer and used as a baseline of low concentrations, while the second took place in winter under intensive residential wood burning (RWB) emissions. Very high winter-mean OC concentrations (26.0 μg m−3) were observed, associated with an OC/EC ratio of 9.9, and mean BCwb and PM2.5 levels of 4.5 μg m−3 and 57.5 μg m−3, respectively. Simultaneously, record-high levoglucosan (Lev) concentrations (mean: 6.0 μg m−3; max: 15.9 μg m−3) were measured, revealing a severely biomass burning (BB)-laden environment. The water-soluble OC component (WSOC) accounted for 56 ± 9% of OC in winter, exhibiting high correlations (R2 = 0.93–0.97) with BB tracers (nss-K+, BCwb, Lev), nitrate and light absorption, potentially indicating the formation of water-soluble brown carbon (BrC) from fast oxidation processes. The examination of diagnostic ratios involving BB tracers indicated the prevalence of hardwood burning, while the mean Lev/OC ratio (22%) was remarkably higher than literature values. Applying a mono-tracer method based on levoglucosan, we estimated very high BB contributions to OC (∼92%), EC (∼64%) and WSOC (∼87%) during winter. On the contrary, low levels were registered during summer for all carbonaceous components, with winter/summer ratios of 4–5 for PM2.5 and BC, 10 for OC, 30 for BCwb and ∼1100 for levoglucosan. The absence of local BB sources in summer, combined with the photochemical processing and aging of regional organic aerosols, resulted in higher WSOC/OC fractions (64 ± 13%). The results indicate highly soluble fine carbonaceous aerosol fraction year-round, which when considered alongside the extreme concentration levels in winter can have important implications for short- and long-term health effects. Keywords: carbonaceous aerosols, biomass burning, levoglucosan, WSOC, heterogeneous chemistry, Greece Published in RUNG: 10.05.2024; Views: 1124; Downloads: 4
Link to file This document has many files! More... |
5. Impact of peri-urban forest fires on air quality and aerosol optical and chemical properties : the case of the August 2021 wildfires in Athens, GreeceDimitris G. Kaskaoutis, Kalliopi Petrinoli, Georgios Grivas, Panayiotis Kalkavouras, M. Tsagkaraki, Kyriaki Papoutsidaki, Iasonas Stavroulas, D. Paraskevopoulou, Aikaterini Bougiatioti, 2024, original scientific article Keywords: biomass burning, carbonaceous aerosols, scattering, absorption, chemical composition, Mediterranean Published in RUNG: 10.05.2024; Views: 1292; Downloads: 0 This document has many files! More... |
6. Vertical profiling of fresh biomass burning aerosol optical properties over the Greek urban city of Ioannina, during the PANACEA winter campaignChristina-Anna Papanikolaou, Alexandros Papayannis, M. Mylonaki, Romanos Foskinis, Panagiotis Kokkalis, Eleni Liakakou, Iasonas Stavroulas, O. Soupiona, Nikolaos Hatzianastassiou, Maria Gavrouzou, 2022, original scientific article Abstract: Vertical profiling of aerosol particles was performed during the PANhellenic infrastructure for Atmospheric Composition and climatE chAnge (PANACEA) winter campaign (10 January 2020–7 February 2020) over the city of Ioannina, Greece (39.65° N, 20.85° E, 500 m a.s.l.). The middle-sized city of Ioannina suffers from wintertime air pollution episodes due to biomass burning (BB) domestic heating activities. The lidar technique was applied during the PANACEA winter campaign on Ioannina city, to fill the gap of knowledge of the spatio-temporal evolution of the vertical mixing of the particles occurring during these winter-time air pollution episodes. During this campaign the mobile single-wavelength (532 nm) depolarization Aerosol lIdAr System (AIAS) was used to measure the spatio-temporal evolution of the aerosols’ vertical profiles within the Planetary Boundary Layer (PBL) and the lower free troposphere (LFT; up to 4 km height a.s.l.). AIAS performed almost continuous lidar measurements from morning to late evening hours (typically from 07:00 to 19:00 UTC), under cloud-free conditions, to provide the vertical profiles of the aerosol backscatter coefficient (baer) and the particle linear depolarization ratio (PLDR), both at 532 nm. In this study we emphasized on the vertical profiling of very fresh (~hours) biomass burning (BB) particles originating from local domestic heating activities in the area. In total, 33 out of 34 aerosol layers in the lower free troposphere were characterized as fresh biomass burning ones of local origin, showing a mean particle linear depolarization value of 0.04 ± 0.02 with a range of 0.01 to 0.09 (532 nm) in a height region 1.21–2.23 km a.s.l. To corroborate our findings, we used in situ data, particulate matter (PM) concentrations (PM2.5) from a particulate sensor located close to our station, and the total black carbon (BC) concentrations along with the respective contribution of the fossil fuel (BCff) and biomass/wood burning (BCwb) from the Aethalometer. The PM2.5 mass concentrations ranged from 5.6 to 175.7 μg/m3, while the wood burning emissions from residential heating were increasing during the evening hours, with decreasing temperatures. The BCwb concentrations ranged from 0.5 to 17.5 μg/m3, with an extremely high mean contribution of BCwb equal to 85.4%, which in some cases during night-time reached up to 100% during the studied period. Keywords: lidar, depolarization ratio, fresh biomass burning aerosols, domestic heating, black carbon, PM2.5 Published in RUNG: 10.05.2024; Views: 1036; Downloads: 5
Full text (6,36 MB) This document has many files! More... |
7. The effect of the averaging period for PMF analysis of aerosol mass spectrometer measurements during offline applicationsChristina Vasilakopoulou, Iasonas Stavroulas, Nikolaos Mihalopoulos, Spyros N. Pandis, 2022, original scientific article Abstract: Offline aerosol mass spectrometer (AMS) measurements can
provide valuable information about ambient organic aerosols in areas and
periods in which online AMS measurements are not available. However, these
offline measurements have a low temporal resolution, as they are based on
filter samples usually collected over 24 h. In this study, we examine
whether and how this low time resolution affects source apportionment
results. We used a five-month period (November 2016–March 2017) of online
measurements in Athens, Greece, and performed positive matrix factorization (PMF)
analysis to both the original dataset, which consists of 30 min
measurements, and to time averages from 1 up to 24 h. The 30 min results
indicated that five factors were able to represent the ambient organic
aerosol (OA): a biomass burning organic aerosol factor (BBOA), which contributed
16 % of the total OA; hydrocarbon-like OA (HOA) (29 %); cooking OA (COA) (20 %); more-oxygenated OA (MO-OOA) (18 %); and less-oxygenated OA (LO-OOA) (17 %). Use of the daily averages resulted in estimated average contributions that were within 8 % of the total OA compared with the high-resolution analysis for the five-month period. The most important difference was for the BBOA contribution, which was overestimated (25 % for low resolution versus 17 % for high resolution) when daily averages were used. The estimated secondary OA varied from 35 % to 28 % when the averaging
interval varied between 30 min and 24 h. The high-resolution results are
expected to be more accurate, both because they are based on much larger
datasets and because they are based on additional information about the
temporal source variability. The error for the low-resolution analysis was
much higher for individual days, and its results for high-concentration days in particular are quite uncertain. The low-resolution analysis
introduces errors in the determined AMS profiles for the BBOA and LO-OOA
factors but determines the rest relatively accurately (theta angle around
10∘ or less). Keywords: AMS, offline PMF, ACSM, organic aerosols Published in RUNG: 10.05.2024; Views: 1537; Downloads: 6
Full text (3,75 MB) This document has many files! More... |
8. Rolling vs. seasonal PMF : real-world multi-site and synthetic dataset comparisonMarta Via, Gang Chen, Francesco Canonaco, Kaspar Rudolf Daellenbach, Benjamin Chazeau, Hasna Chebaicheb, Jianhui Jiang, Hannes Keernik, Chunshui Lin, Nicolas Marchand, 2022, original scientific article Abstract: Abstract. Particulate matter (PM) has become a major concern in terms of human health
and climate impact. In particular, the source apportionment (SA) of organic
aerosols (OA) present in submicron particles (PM1) has gained relevance
as an atmospheric research field due to the diversity and complexity of its
primary sources and secondary formation processes. Moreover, relatively
simple but robust instruments such as the Aerosol Chemical Speciation
Monitor (ACSM) are now widely available for the near-real-time online
determination of the composition of the non-refractory PM1. One of the
most used tools for SA purposes is the source-receptor positive matrix
factorisation (PMF) model. Even though the recently developed rolling PMF technique has
already been used for OA SA on ACSM datasets, no study has assessed its
added value compared to the more common seasonal PMF method using a practical
approach yet. In this paper, both techniques were applied to a synthetic
dataset and to nine European ACSM datasets in order to spot the main output
discrepancies between methods. The main advantage of the synthetic dataset
approach was that the methods' outputs could be compared to the expected
“true” values, i.e. the original synthetic dataset values. This approach
revealed similar apportionment results amongst methods, although the
rolling PMF profile's adaptability feature proved to be advantageous, as it
generated output profiles that moved nearer to the truth points. Nevertheless,
these results highlighted the impact of the profile anchor on the solution,
as the use of a different anchor with respect to the truth led to
significantly different results in both methods. In the multi-site study,
while differences were generally not significant when considering year-long
periods, their importance grew towards shorter time spans, as in intra-month
or intra-day cycles. As far as correlation with external measurements is
concerned, rolling PMF performed better than seasonal PMF globally for the ambient
datasets investigated here, especially in periods between seasons. The results of this
multi-site comparison coincide with the synthetic dataset in terms of
rolling–seasonal similarity and rolling PMF reporting moderate improvements. Altogether, the
results of this study provide solid evidence of the robustness of both
methods and of the overall efficiency of the recently proposed rolling PMF
approach. Keywords: particulate matter, synthetic dataset comparison, source apportionment, organic aerosols Published in RUNG: 10.05.2024; Views: 1227; Downloads: 7
Full text (2,03 MB) This document has many files! More... |
9. Submicron aerosol pollution in Greater Cairo (Egypt) : a new type of urban haze?Aliki Christodoulou, Spiros Bezantakos, Efstratios Bourtsoukidis, Iasonas Stavroulas, Michael Pikridas, Konstantina Oikonomou, Minas Iakovides, Salwa K. Hassan, Mohamed Boraiy, Mostafa El-Nazer, 2024, original scientific article Keywords: megacity, submicron aerosols, urban haze, Greater Cairo, hygroscopic aerosols, ammonium chloride Published in RUNG: 10.05.2024; Views: 1328; Downloads: 6
Full text (7,34 MB) This document has many files! More... |
10. A method for quantification of mineral dust in air based on optical absorption of particles concentrated by a virtual impactor and a device performing the said method : SI3783336 (T1), 2024-02-29Luka Drinovec, Griša Močnik, Iasonas Stavroulas, Spiros Bezantakos, Michael Pikridas, Florin Unga, Jean Sciare, 2024, patent Abstract: The present invention belongs to the field of devices and methods for measurement of particle concentration, more precisely to the field of devices and methods for quantification of particles based on their physical characteristics, especially with the use of optical means. The invention relates to a method for determination of ambient mineral dust concentration based on optical absorption of particles concentrated by a virtual impactor as well as a device performing the said method. The method comprises the following steps:- Sampling air samples with particle size smaller than 1 µm (PM1) and sampling air samples with particle size up to 10 µm;- Concentrating the samples with particle sizes up to 10 µm with a virtual impactor;- Measuring optical absorption of collected samples at least one wavelength from UV to IR spectre, preferably from 370 to 950 nm, most preferably at 370 nm;- Subtracting the absorption of the samples with particle size smaller than 1 µm from the absorption of the sample concentrated by the virtual impactor. Keywords: dust, black carbon, aerosols Published in RUNG: 24.04.2024; Views: 2087; Downloads: 8
Link to file This document has many files! More... |