Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


31 - 40 / 91
First pagePrevious page12345678910Next pageLast page
31.
Carbon nanoparticles assisted energy transport mechanism in leaves: A thermal lens study
Mohanachandran Nair Sindhu Swapna, 2019, original scientific article

Abstract: In the world of increasing population and pollution due to carbon emissions, the research for effective utilization of futile diesel soot for fruitful applications has become a necessity for a sustainable development. The contribution to pollution from vehicles and industries due to the aging of engines has caused a crisis. Carbon nanoparticles (CNPs) have been the subject of interest because of their good physical, chemical, and biological properties. The present work investigates the role of CNPs produced by internal combustion engines on the energy transport mechanism among leaf pigments using the sensitive and nondestructive single beam thermal lens technique. The studies reveal the absorption changes by various chlorophyll pigments with the concentration of CNPs sprayed on the leaves. Though for low concentrations CNPs lower the photon absorbance by chlorophyll pigments, the effect gets reversed at higher concentrations. The variation of thermal diffusivity with CNP concentration and its role in the energy transport mechanism among chlorophyll pigments are also studied. It is found that CNP concentrations of 625-2500mg/l are good for better intra-pigment energy transport leading to increased rate of photosynthesis and plant yield and thereby helping in attaining food security. The variation of CNP assisted energy transport among leaf pigments on the production of nicotinamide adenine dinucleotide phosphate (NADPH) and carbohydrates is also studied with ultraviolet (UV) and near-infrared (NIR) spectroscopy.
Keywords: carbon nanoparticle, soot, energy transport, thermal lens, photosynthesis
Published in RUNG: 05.07.2022; Views: 1073; Downloads: 0
This document has many files! More...

32.
Thermal induced order fluctuations in carbon nanosystem with carbon nanotubes
Mohanachandran Nair Sindhu Swapna, Sankararaman S, 2019, original scientific article

Abstract: The allotropes of carbon nanomaterials such as carbon nanotubes (CNTs) and nanoparticles (CNPs) have emerged as a thrust area of research during the last decade because of their unique properties.CNTs are widely used in microelectronic, sensor, bio-imaging, supercapacitors, fuel cell, and etc. applications. In the present work, we report the thermal induced order fluctuations in the CNPs with CNTs synthesized from camphor. The samples annealed to different temperatures are characterized by various spectroscopic techniques such as UV–Visible, Raman, Fourier Transform Infrared, and X-ray Photoelectron Spectroscopy. Samples’ structure and morphology are analyzed by scanning and transmission electron microscopes, and X-ray diffraction. The thermogravimetric analysis indicates not only the mass variation upon annealing but the thermal stability also. The spectroscopic and thermal analyses reveal the thermal induced oscillations in the carbon system which can be assigned to the dynamics in CNTs through desorption of hydrogen/ thinning or shortening of multi-walled CNTs/sp2 - sp3 conversions and the removal of amorphous carbon (AC). Since the amount of CNTs in the sample decides the electrical behavior, the sample can be tuned to a desired electrical conductivity by annealing and thus making it a tunable material for electronic applications.
Keywords: Carbon nanotubes, Camphor, Thermal induced oscillations
Published in RUNG: 05.07.2022; Views: 922; Downloads: 0
This document has many files! More...

33.
Tunable fluorescence from natural carbon source- Pandanus
Mohanachandran Nair Sindhu Swapna, SARITHA DEVI H V, AMBADAS G, Sankararaman S, 2019, original scientific article

Abstract: Carbon materials possessing photoluminescence properties are considered as potential candidates in a wide range of photonic and optoelectronic applications. In this work, the cellulose derived from the natural source, Pandanus, is autoclave-treated for the synthesis of fluorescent carbon. The natural fibres are greatly preferred over synthetic ones due to their cost-effectiveness, easy processability, non-abrasivity, non-toxic and environment-friendly characteristics along with high mechanical strength and damage tolerance. These properties enable them to be used as templates for synthesis, as important reinforcement materials for commercial thermoplastics and for making value-added products. In this study, the synthesised sample is subjected to structural, morphological, elemental and optical characterisations. These studies reveal that the sample can be used as a low-cost tunable light-emitting source for photonic, biomedical and biosensing applications.
Keywords: Fluorescence, Pandanus, natural carbon, cellulose
Published in RUNG: 04.07.2022; Views: 990; Downloads: 0
This document has many files! More...

34.
Tuning the thermal diffusivity of the seed matter for enhanced biosynthesis: A thermal lens study
Mohanachandran Nair Sindhu Swapna, Sankararaman S, 2020, original scientific article

Abstract: The thermodynamics of the seed matter after imbibition is highly significant as the growth and germination involve complex biochemical exergonic process. The germination of seed and compositional variation of the seed matter has always been a fascinating field of research. The present work unveils the thermodynamics associated with the changing thermal diffusivity of the seed matter through the green technology-based single-beam thermal lens technique. Investigations are carried out in Vigna radiata seeds, germinating in media with and without carbon allotropes, through various spectroscopic techniques. The morphology of the soot and carbon allotropes is understood from the field emission scanning electron microscope images. The thermal lens study throws light into the energy trapping nature of the seed matter of the seed growing in carbon allotropic media which facilitates biosynthesis. The observed increased rate of growth of the seed is substantiated through the ultraviolet–visible–near-infrared (NIR), Fourier transform infrared, and photoluminescence (PL) spectroscopic analyses. The NIR and PL studies also reveal the formation of chlorophyll molecule during germination. Thus, the study suggests a mechanism for tuning the thermal diffusivity of the seed matter as to trap the biochemical energy to facilitate the further biosynthesis and thereby to enhance the growth rate.
Keywords: seed matter, thermal diffusivity, thermal lens, carbon nanoparticle, soot
Published in RUNG: 04.07.2022; Views: 1126; Downloads: 0
This document has many files! More...

35.
The efflorescent carbon allotropes: Fractality preserved blooming through alkali treatment and exfoliation
Mohanachandran Nair Sindhu Swapna, Sankararaman S, 2020, original scientific article

Abstract: The work reported in the paper elucidates morphological modification induced nanoart and surface area enhancement of graphite, graphene, and soot containing carbon allotropes through ultrasonication and alkali-treatment. The field emission scanning electron microscopic (FESEM) analysis of the samples before and after exfoliation reveals the formation of brilliant flower-like structures from spindle-like basic units due to Ostwald ripening. The x-ray diffraction analysis of the samples gives information about structural composition. The fractal analysis of the FESEM images indicates a multifractal structure with the dimensions—box-counting dimension D0 (1.72), information dimension D1 (1.66), and correlation dimension D2 (1.63)—preserved upon exfoliation. The process of ultra-sonication assisted liquid phase exfoliation resembles blooming as if the carbon allotropes are efflorescent.
Keywords: carbon allotropes, fractal dimension, soot, fractality, alkali treatment, exfoliation
Published in RUNG: 04.07.2022; Views: 1147; Downloads: 0
This document has many files! More...

36.
Fluorescent emission from a natural carbon matrix incorporating sodium
Mohanachandran Nair Sindhu Swapna, 2019, original scientific article

Abstract: The process of functionalization of metals in natural carbon matrices has become an important area of research due to its improved properties and applications. Carbon materials possessing photoluminescence (PL) properties find a wide range of applications in photonics. Among the various carbon materials available in nature, cellulose has critical importance since it is the most abundant and wide-spread biopolymer on Earth, and also, the important component in plants’ skeleton. In the present work, the functionalized carbonaceous material is prepared by the hydrothermal treatment of natural cellulosic source Aloe Vera and the metallic element sodium is properly incorporated into it by adding sodium borohydride to observe the fluorescence emission changes. The incorporation of metal ions in the carbon matrix leads to structural modifications and properties as evidenced by field emission scanning electron microscopy, Energy dispersive spectroscopy, X-ray dot mapping, X-ray Photoelectron spectroscopy, and X-ray diffraction analysis. The optical emission characteristics are studied using Photoluminescence spectroscopy, CIE plot, power spectrum, color purity, and quantum yield. The excitation wavelength dependent photoluminescence emission mechanism shown by the carbon–metal incorporated products obtained from the cellulosic raw materials makes them suitable for biomedical and biosensing applications because of the non-toxic and eco-friendly nature.
Keywords: Fluorescent emission, sodium carbide, cellulose, carbon matrix
Published in RUNG: 30.06.2022; Views: 1059; Downloads: 0
This document has many files! More...

37.
Fractal and spectroscopic analysis of soot from internal combustion engines
Mohanachandran Nair Sindhu Swapna, SARITHA DEVI H V, RAJ VIMAL, Sankararaman S, 2018, original scientific article

Abstract: Today diesel engines are used worldwide for various applications and very importantly in transportation. Hydrocarbons are the most widespread precursors among carbon sources employed in the production of carbon nanotubes (CNTs). The aging of internal combustion engine is an important parameter in deciding the carbon emission and particulate matter due to incomplete combustion of fuel. In the present work, an attempt has been made for the effective utilization of the aged engines for potential applicationapplications in fuel cells and nanoelectronics. To analyze the impact of aging, the particulate matter rich in carbon content areis collected from diesel engines of different ages. The soot with CNTs is purified by the liquid phase oxidation method and analyzed by Field Emission Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, Energy Dispersive Spectroscopy, UV-Visible spectroscopy, Raman spectroscopy and Thermogravimetric analysis. The SEM image contains self-similar patterns probing fractal analysis. The fractal dimensions of the samples are determined by the box counting method. We could find a greater amount of single-walled carbon nanotubes (SWCNTs) in the particulate matter emitted by aged diesel engines and thereby giving information about the combustion efficiency of the engine. The SWCNT rich sample finds a wide range of applications in nanoelectronics and thereby pointing a potential use of these aged engines.
Keywords: Fractals, internal combustion engine, efficiency, soot, carbon nanoparticle
Published in RUNG: 30.06.2022; Views: 1139; Downloads: 0
This document has many files! More...

38.
Fractal analysis - a surrogate technique for material characterization
Mohanachandran Nair Sindhu Swapna, Sankararaman S, 2017, original scientific article

Abstract: Fractal analysis has emerged as a potential analytical tool in almost all branches of science and technology. The paper is the first report of using fractal dimension as a surrogate technique for estimating particle size. A regression equation is set connecting the soot particle size and fractal dimension, after investigating the Field Emission Scanning Electron Microscopic (FESEM) images of carbonaceous soot from five different sources. Since the fractal dimension is an invariant property under the scale transformation, an ordinary photograph of the soot should also yield the same fractal dimension. This enables one to determine the average size of the soot particles, using the regression equation, by calculating the fractal dimension from the photograph. Hence, instead of frequent measurement of average particle size from FESEM, this technique of estimating the particle size from the fractal dimension of the soot photograph, is found to be a potentially cost-effective and non-contact method.
Keywords: fractals, FESEM, carbon nanoparticles, particle size, box-counting
Published in RUNG: 30.06.2022; Views: 1120; Downloads: 0
This document has many files! More...

39.
Particulate Exhaust Analysis from Internal Combustion Engines
Mohanachandran Nair Sindhu Swapna, 2017, short scientific article

Abstract: Today the world is worried over the particulate emission from various forms of internal combustion engines. The present work is an attempt to understand the constituents of the particulate emission and its possible use. The particulate exhaust matter containing carbonaceous soot produced from the combustion of fuel containing hydrocarbons shows the presence of significant amount of carbon Nanomaterials. Hydrocarbons are the most widespread precursors among carbon sources employed in the production of carbon nanotubes (CNTs) and carbon nanoparticles (CNPs). Carbon nanotubes find application in fuel cells providing improved performance. The soot particles collected from the internal combustion diesel engines are cleaned, powdered and analyzed by various techniques. The CNPs are characterized by Field Emission Scanning Electron Microscopy (FESEM), X-Ray Powder Diffraction (XRD), Energy Dispersive X ray diffraction (EDS), Raman Spectroscopy, Photoluminescence spectroscopy (PL), Power spectrum and CIE plot. X Ray Diffraction and Raman spectroscopic analysis show the presence of carbon nanotubes in the amorphous materials.
Keywords: HydrocarbonsL Carbon nanotubes, Diesel engines, CIE plot, EDX, Raman spectroscopy
Published in RUNG: 30.06.2022; Views: 1040; Downloads: 0
This document has many files! More...

40.
Ultraviolet Protection Action of Carbon Nanoparticles in Leaves
Mohanachandran Nair Sindhu Swapna, 2017, original scientific article

Abstract: Carbon nanoparticles (CNPs) have been explored widely in many fields of science and technology owing to its unique physical, chemical, mechanical, and biological properties. The interaction of the visible region of the electromagnetic radiation with plants and their role in photosynthesis is well studied. The antenna pigments in the protein matrix of thylakoid play a significant role in energy transport mechanism involved in photosynthesis. The energy absorbed by the proteins in the UV region also involves in the energy transport. The present work is aimed to understand the absorption of radiation by leaves in the ultraviolet (UV) region and the impact of CNPs produced by internal combustion diesel engines (ICE) in altering the absorbance level. The effect of CNPs is found to lower the UVabsorbance by leaves and thus acting as UV shield, protecting the leaves from cell damages. The characterization of the CNP and leaves is done by field emission scanning electron microscope (FESEM) and UV-visible spectrophotometer.
Keywords: Ultraviolet, Carbon nanoparticles, Photosynthesis, Internal combustion engine
Published in RUNG: 30.06.2022; Views: 1052; Downloads: 0
This document has many files! More...

Search done in 0.06 sec.
Back to top