Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


11 - 20 / 23
First pagePrevious page123Next pageLast page
11.
A multielement analysis of Cu induced changes in the mineral profilesof Cu sensitive and tolerant populations of Silene paradoxa L.
Sara Pignattelli, Ilaria Colzi, Antonella Buccianti, Ilenia Cattani, Gian Maria Beone, Henk Schat, Cristina Gonnelli, 2013, original scientific article

Abstract: tThis work investigates the Cu induced changes in element profiles in contrasting ecotypes of Silene para-doxa L. A metallicolous copper tolerant population and a non-metallicolous sensitive population weregrown in hydroponics and exposed to different CuSO4treatments. Shoot and root concentrations of Ca,Cu, Fe, K, Mg, Mn, Mo, Na, P, S and Zn were evaluated through ICP-OES.Results indicated that increasing the environmental Cu concentration had a population dependenteffect on element profiles, shoot-to-root ratios and correlations among the elements. Generally, in thetolerant population Cu treatment induced a higher element accumulation in roots and had minimaleffects on the shoot element profile, thus resulting in a progressively decreasing shoot-to-root ratio foreach element. In the sensitive population element concentrations in root and shoot were much moreaffected and without a consistent trend. Copper treatment also affected the correlations between theelements, both in roots and shoots of the two populations, but more so in the sensitive population thanin the tolerant one. Thus, Cu exposure strongly disturbed element homeostasis in the sensitive population,but barely or not in the tolerant one, probably mainly due to a higher capacity to maintain proper rootfunctioning under Cu exposure in the latter. Differences in element profiles were also observed in theabsence of toxic Cu exposure. These differences may reflect divergent population-specific adaptations todifferential nutrient availability levels prevailing in the populations’ natural environments. There is noevidence of inherent side-effects of the Cu tolerance mechanism operating in the tolerant population.
Keywords: Mineral profile, Copper tolerance, Silene paradoxa, Compositional data analysis
Published in RUNG: 20.04.2020; Views: 4300; Downloads: 0
This document has many files! More...

12.
Linking root traits to copper exclusion mechanisms in Silene paradoxa L. (Caryophyllaceae)
Ilaria Colzi, Sara Pignattelli, Elisabetta Giorni, Alessio Papini, Cristina Gonnelli, 2015, original scientific article

Abstract: Copper is one of the most important pollutants in mine- contaminated soils. This study tests the response in a sensitive population vs a tolerant one of the model species Silene paradoxa in order to understand the general mechanisms of tolerance at the micromorphological and ultrastructural level. Two populations of Silene paradoxa were grown in hydroponics and exposed to different CuSO4 treatments. The roots were investigated with light, fluorescence and transmission electron microscope. Callose and lignin were spectrophotometrically determined. The tolerant population constitutively possessed a higher amount of mucilage and was able to reduce the length of the zone between the apex and the first lignified tracheids. Callose production decreased. It did not show remarkable copper-induced ultrastructural modifications, apart from the presence of precipitates in the tangential walls. The sensitive population showed huge nucleoli with a spongy periphery in the central cylinder together with the presence of electrondense granules in the mitochondria. Plastids were rarely observed and generally very electrondense and elongated. In the copper tolerant population of S. paradoxa some of the root traits concurring to generate metal-excluding roots were suggested to be mucilage and lignin production and the reduction of the subapical root zone.
Keywords: Root, Copper exclusion, Lignin, Callose, Tolerance to copper, Silene paradoxa
Published in RUNG: 20.04.2020; Views: 4273; Downloads: 0
This document has many files! More...

13.
Role of Cu current collector on electrochemical mechanism of Mg–S battery
Ana Robba, Maja Mežnar, Alen Vižintin, Jan Bitenc, Jernej Bobnar, Iztok Arčon, Anna Randon-Vitanova, Robert Dominko, 2020, original scientific article

Abstract: Development of magnesium sulfur battery is accompanied with all known difficulties present in Li–S batteries, however with even more limited choice of electrolytes. In the present work, the influence of current collector on electrochemical mechanism was investigated in light of different reports where improved behavior was ascribed to electrolyte. Notable differences in cycling behavior are reported when Al current collector is replaced by Cu current collector independent of electrolyte. The initial reduction of sulfur follows similar reaction path no mater of current collector, but formation of MgS can be in competition with formation of CuS in the presence of Cu cations. With the subsequent cycling cells prepared from cathodes deposited on Cu current collector show decrease in the voltage and formation of single plateau during cycling. The change corresponds to the involvement of Cu into the reaction and formation of redox couple Mg/CuS as determined by Cu K-edge XANES measurements. Corrosion of Cu foil is identified by SEM and serves as a source of Cu cations for the chemical reaction between Cu and polysulfides. Mg/CuS redox couple shows improved cycling stability, but theoretical energy density is severely reduced due to substitution of S with CuS as cathode active material.
Keywords: Magnesium Sulfur Rechargeable batteries Current collector Copper Corrosion
Published in RUNG: 16.01.2020; Views: 4230; Downloads: 0
This document has many files! More...

14.
Capabilities of hydrogen-producing green algae Clamydomonas reinhardtii for copper bioremediation in wastewaters
Urška Žvab, Danijel Stojković, Matjaž Valant, 2019, published scientific conference contribution abstract

Keywords: copper, hydrogen, wastewater, green algae, Clamydomonas reinhardtii
Published in RUNG: 19.12.2019; Views: 4252; Downloads: 0
This document has many files! More...

15.
16.
Zr/Cu-TiO2 CATALYSTS FOR PHOTOCATALYTIC WATER TREATMENT
Olena Pliekhova, 2019, doctoral dissertation

Abstract: This work entitled «Zr/Cu-TiO2 catalysts for photocatalytic water treatment» tackles a problem of tons of dyes discharged everyday mainly from textile industries. This is a huge concern because of dyes persistence, toxicity and potential to the bioaccumulation in living organisms. Here, a small contribution to overall problem is presented. The research work consists of three main parts: Theoretical background, Experimental and Results and discussion. In the Theoretical background chapter the overall problem is identified and discussed. The main water treatment techniques are presented briefly with their advantages and drawbacks. Photocatalysis assisted with TiO2 is shown as an alternative additional technique with its own pros and cons. Further, a cursory overview of TiO2 modification techniques is made and advantages in using copper and zirconium oxides for TiO2 modification are presented. The reason and possible positive effect of using of two oxides simultaneously for TiO2 modification is indicated. Additionally, a positive impact of solar light for overall rate of dyes degradation assisted with TiO2 is discussed. Within the framework of photosensitization effect, the problem of using dyes for assessment of photocatalytic properties of materials under the visible light is touched on. Photothermal methods as possible beneficial techniques for this purpose are proposed. In the Experimental chapter, all experimental techniques used in current research work with the technical details specific for the research work are presented. There are methods of materials preparation, photocatalytic tests under different conditions and varying model pollutants, and physico-chemical characterization techniques. The Results and discussion chapter is divided by three subchapters. Each chapter is dedicated to one hypothesis, which was checked and confirmed or disproved. The first hypothesis is about beneficial loading of copper and zirconium oxides to TiO2. After numerous experiments held, it was concluded that the pair of copper and zirconium oxides is beneficial for simultaneous application on TiO2 surface to promote its performance. The second subchapter is about zirconium distribution and its impact on the activity of studied materials towards the antraquinone dye Reactive Blue 19. Different techniques such as XRD, TEM, EXAFS and many others were used in order to characterize the materials and to understand the details of the processes taking place. The existence of upper limit of copper oxide loading for its beneficial effect on TiO2 performance was demonstrated. It was observed that zirconium species loading leads to improvement in performance of materials with higher copper loading, which otherwise lowers activity of TiO2 – this is in case when copper only above its optimal level is present. It was concluded that zirconium oxide containing species occupy rutile surface sites in mixed phase TiO2 and this way beneficially influence the material performance towards the dye removal. The third subchapter is about the visible light TiO2 assisted dye degradation. It is well known that photosensitization mechanism of dye degradation appears under the visible and as a consequence under the solar light irradiation. This leads to the overall enhancement of dyes degradation, which is positive and may be used as a benefit for faster pollutant destruction. However, this fact leads to mishmash in the determination of real photocatalytic activity of materials towards the dye. It was hypothesized that the impact of photosensitization mechanism on the overall material performance against Reactive blue 19 dye (RB19) descends with the dye concentration lowering. Thermal lens spectrometry (TLS) which is sensitive to chemicals at low concentrations was used for hypothesis evaluation. To summarize the research work achievements, the conclusions of the thesis are given at the end.
Keywords: titanium dioxide, photocatalysis, zirconium/copper, surface modification, water treatment, dyes
Published in RUNG: 03.12.2019; Views: 11677; Downloads: 145
.pdf Full text (3,18 MB)

17.
Crystal habit modification of Cu(II) isonicotinate-N-oxide complexes using gel phase crystallisation
Dipankar Ghosh, Katja Ferfolja, Žygimantas Drabavičius, Jonathan Steed, Krishna Kumar Damodaran, 2018, original scientific article

Abstract: We report the crystallisation of three forms of copper(II) isonicotinate-N-oxide complex and their phase interconversion via solvent-mediated crystal to crystal transformation. The different forms of copper complex have been isolated and characterised by single crystal X-ray diffraction. Gel phase crystallisation performed in hydrogels, low molecular weight gels and gels of tailored gelator showed crystal habit modification. Crystallisation in aqueous ethanol resulted in concomitant formation of blue (form-I) and green (form-II/IV) crystals while use of low molecular weight gel results in selective crystallization of the blue form-I under identical conditions. Comparison of gel phase and the solution state crystallisation in various solvent compositions reveals that the blue form-I is the thermodynamically stable form under ambient conditions.
Keywords: copper(II) complex, gel phase crystallisation, crystal habit modification, isonicotinate-N-oxide, X-ray diffraction
Published in RUNG: 08.11.2018; Views: 4587; Downloads: 0
This document has many files! More...

18.
The effect of Zr loading on photocatalytic activity of Cu modified TiO2
Olena Pliekhova, O. L. Pliekhov, Mattia Fanetti, Iztok Arčon, Nataša Novak Tušar, Urška Lavrenčič Štangar, 2018, published scientific conference contribution

Keywords: Titanium diokside, acidic sites, surface titration, copper, zirconium
Published in RUNG: 10.09.2018; Views: 5518; Downloads: 0
This document has many files! More...

19.
Heavy metal analysis with in-situ prepared copper film electrode as a tool for environmental monitoring
Nana Ivana Hrastnik, 2017, master's thesis

Abstract: Monitoring and measuring heavy metals in the environment is of great importance and requires sensitive and reliable analytical techniques capable of detecting trace level concentrations. Nowadays, measurements of heavy metals are usually performed using sophisticated and expensive instrumental techniques, such as atomic absorption spectroscopy (AAS), atomic fluorescence spectroscopy (AFS), inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectroscopy (ICP-OES) etc. In this aspect, advanced electroanalytical (stripping) techniques represent a favourable alternative, facilitating sensitive and selective measurements of various analytes using relatively simple, portable and non-expensive instrumentation. This work is an investigation of novel copper-based electrodes for measuring trace levels of selected heavy metal ions, i.e. mercury(II), lead(II), tin(IV) and nickel(II). The methods of choice were anodic stripping voltammetry (ASV) in combination with the in-situ prepared copper film electrode (CuFE) for measuring low concentrations of mercury(II) and lead(II) (simultaneously) and tin(IV) in the test solutions and adsorptive cathodic stripping voltammetry (AdCSV) for determination of nickel(II). Metal-film electrodes are regularly employed in electrochemical stripping analysis due to their simple fabrication and surface regeneration. The newly developed CuFE appears to be a cheaper alternative to gold-based electrodes with several attractive electroanalytical characteristics, i.e. with low limits of detection (LOD), good repeatability and favourable linear response.
Keywords: Copper film electrode, anodic stripping voltammetry, adsorptive cathodic stripping voltammetry, heavy metals, environment.
Published in RUNG: 12.09.2017; Views: 6429; Downloads: 272
.pdf Full text (1,78 MB)

20.
Role of Surface Cu-O-Zr Sites in the Photocatalytic Activity of TiO2 Nanoscale Particles
Olena Pliekhova, Iztok Arčon, Nataša Novak Tušar, Urška Lavrenčič Štangar, 2016, published scientific conference contribution abstract

Keywords: Photocatalysis, Titanium dioxide, Copper, Zirconia, co-doping, EXAFS, XANES
Published in RUNG: 23.08.2017; Views: 6340; Downloads: 0
This document has many files! More...

Search done in 0.04 sec.
Back to top