11. The Energy Content of Extensive Air Showers in the Radio Frequency Range of 30-80 MHzChristian Glaser, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution Abstract: At the Auger Engineering Radio Array (AERA) of the Pierre Auger
Observatory, we have developed a new method to measure the
total amount of energy that is transferred from the primary
cosmic ray into radio emission. We find that this radiation
energy is an estimator of the cosmic ray energy. It scales
quadratically with the cosmic ray energy, as expected for
coherent emission. We measure 15.8 MeV of radiation energy for
a 1 EeV air shower arriving perpendicular to the geomagnetic
field at the Auger site, in the frequency band of the detector
from 30 to 80 MHz. These observations are compared to the data
of the surface detector of the Observatory, which provide
well-calibrated energies and arrival directions of the cosmic
rays. We find energy resolutions of the radio reconstruction
of 22% for the complete data set, and 17% for a high-quality
subset containing only events with at least five stations with
signal. Keywords: Pierre Auger Observatory, the Auger Engineering Radio Array (AERA), extensive air showers, radio reconstruction: energy resolution Published in RUNG: 03.03.2016; Views: 5677; Downloads: 214 Full text (574,66 KB) |
12. Lightning Detection at the Pierre Auger ObservatoryJulian Rautenberg, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution Abstract: The Auger Engineering Radio Array, an extension of the Pierre
Auger Observatory with antennas in the MHz range, requires to
monitor the atmospheric conditions, which have a large influence
on the radio emission of air showers. In particular, amplified
signals up to an order of magnitude have been detected as an
affect of thunderstorms. For a more detailed investigation and
more generally, for detecting thunderstorms, a new lightning
detection system has been installed at the Pierre Auger
Observatory in Argentina. In addition, an electric-field mill
measures the field strength on ground level at the antenna
array. With these measurements, data periods affected
by thunderstorms can be identified. Additionally, a lightning
trigger for the water-Cherenkov detectors was developed to read
out individual stations when a lightning was detected nearby.
With these data, a possible correlation between the formation
of lightning and cosmic rays can be investigated even at low
energies of about 10[sup]15 eV. The structure and functionality
of the lightning detection are described and first data
analyses are shown. Keywords: Pierre Auger Observatory, Auger Engineering Radio Array, atmospheric monitoring, lightning detectors Published in RUNG: 03.03.2016; Views: 5543; Downloads: 200 Full text (1,10 MB) |