1. Dark matter line searches with the Cherenkov Telescope ArrayS. Abe, Saptashwa Bhattacharyya, Christopher Eckner, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2024, izvirni znanstveni članek Opis: Monochromatic gamma-ray signals constitute a potential smoking gun signature for annihilating
or decaying dark matter particles that could relatively easily be distinguished from astrophysical
or instrumental backgrounds. We provide an updated assessment of the sensitivity of
the Cherenkov Telescope Array (CTA) to such signals, based on observations of the Galactic
centre region as well as of selected dwarf spheroidal galaxies. We find that current limits
and detection prospects for dark matter masses above 300 GeV will be significantly improved,
by up to an order of magnitude in the multi-TeV range.
This demonstrates that CTA will set a new standard for gamma-ray astronomy also in this respect, as the world's largest and most sensitive high-energy gamma-ray observatory, in particular due to its exquisite energy resolution at TeV energies and the adopted observational strategy focussing
on regions with large dark matter densities.
Throughout our analysis, we use up-to-date instrument response functions, and we thoroughly
model the effect of instrumental systematic uncertainties in our statistical treatment. We further present results for other potential signatures with sharp spectral features, e.g. box-shaped spectra, that would likewise very clearly point to a particle dark matter origin. Ključne besede: dark matter experiments, dark matter theory, gamma ray experiments, Cherenkov Telescope Array Observatory Objavljeno v RUNG: 24.09.2024; Ogledov: 223; Prenosov: 0 Celotno besedilo (2,04 MB) Gradivo ima več datotek! Več... |
2. The Cherenkov Telescope ArrayDaniel Mazin, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci Opis: The Cherenkov Telescope Array (CTA) is the next generation ground-based observatory
for gamma-ray astronomy at very-high energies. It will be capable of detecting gamma rays in the energy range from 20 GeV to more than 300 TeV with unprecedented precision in energy and directional reconstruction. With more than 100 telescopes of three different types it will be located in the northern hemisphere at La Palma, Spain, and in the southern
at Paranal, Chile. CTA will be one of the largest astronomical infrastructures in the world with open data access and it will address questions in astronomy, astrophysics and fundamental physics in the next decades. In this presentation we will focus on the status
of the CTA construction, the status of the telescope prototypes and highlight some of the physics perspectives. Ključne besede: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array, CTA sensitivity, gamma-ray bursts, POpulation Synthesis Theory Integrated project for very high-energy emission Objavljeno v RUNG: 04.12.2023; Ogledov: 1519; Prenosov: 5 Celotno besedilo (27,92 MB) Gradivo ima več datotek! Več... |
3. POSyTIVE : a GRB population study for the Cherenkov Telescope ArrayMaria Grazia Bernardini, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, objavljeni znanstveni prispevek na konferenci Opis: One of the central scientific goals of the next-generation Cherenkov Telescope Array
(CTA) is the detection and characterization of gamma-ray bursts (GRBs). CTA will be sensitive to gamma rays with energies from about 20 GeV, up to a few hundred TeV.
The energy range below 1 TeV is particularly important for GRBs. CTA will allow exploration of this regime with a ground-based gamma-ray facility with unprecedented sensitivity.
As such, it will be able to probe radiation and particle acceleration mechanisms at work in GRBs. In this contribution, we describe POSyTIVE, the POpulation Synthesis Theory Integrated project for very high-energy emission. The purpose of the project is to make realistic predictions for the detection rates of GRBs with CTA, to enable studies
of individual simulated GRBs, and to perform preparatory studies for time-resolved
spectral analyses. The mock GRB population used by POSyTIVE is calibrated using the entire 40-year dataset of multi-wavelength GRB observations. As part of this project we explore theoretical models for prompt and afterglow emission of long and short GRBs,
and predict the expected radiative output. Subsequent analyses are performed
in order to simulate the observations with CTA, using the publicly available ctools and Gammapy frameworks. We present preliminary results of the design and implementation
of this project. Ključne besede: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array, CTA sensitivity, gamma-ray bursts, population Synthesis Theory, very high-energy emission Objavljeno v RUNG: 04.12.2023; Ogledov: 2100; Prenosov: 3 Celotno besedilo (1,50 MB) Gradivo ima več datotek! Več... |
4. Classification of gamma-ray targets for velocity-dependent and subhalo-boosted dark-matter annihilationThomas Lacroix, Gaetán Facchinetti, Judit Pérez Romero, Martin Stref, Julien Lavalle, David Maurin, Miguel Sánchez-Conde, izvirni znanstveni članek Opis: Gamma-ray observations have long been used to constrain the properties of dark matter (DM), with a strong focus on weakly interacting massive particles annihilating through velocity-independent processes. However, in the absence of clear-cut observational evidence for the simplest candidates, the interest of the community in more complex DM scenarios involving a velocity-dependent cross-section has been growing steadily over the past few years. We present the first systematic study of velocity-dependent DM annihilation (in particular p-wave annihilation and Sommerfeld enhancement) in a variety of astrophysical objects, not only including the well-studied Milky Way dwarf satellite galaxies, but nearby dwarf irregular galaxies and local galaxy clusters as well. Particular attention is given to the interplay between velocity dependence and DM halo substructure. Uncertainties related to halo mass, phase-space and substructure modelling are also discussed in this velocity-dependent context. We show that, for s-wave annihilation, extremely large subhalo boost factors are to be expected, up to 10^11 in clusters and up to 10^6–10^7 in dwarf galaxies where subhalos are usually assumed not to play an important role. Boost factors for p-wave annihilation are smaller but can still reach 10^3 in clusters. The angular extension of the DM signal is also significantly impacted, with e.g. the cluster typical emission radius increasing by a factor of order 10 in the s-wave case. We also compute the signal contrast of the objects in our sample with respect to annihilation happening in the Milky Way halo. Overall, we find that the hierarchy between the brightest considered targets depends on the specific details of the assumed particle-physics model. Ključne besede: dark matter theory, dwarf galaxies, galaxy clusters, gamma-ray theory Objavljeno v RUNG: 27.01.2023; Ogledov: 1802; Prenosov: 0 Gradivo ima več datotek! Več... |
5. |
6. |