1. Improved calibration methods and reconstruction of the underground muon detector of the Pierre Auger ObservatoryJoaquín De Jesús, A. Abdul Halim, P. Abreu, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, objavljeni znanstveni prispevek na konferenci Opis: As part of the upgrade of the Pierre Auger Observatory, known as AugerPrime, the Underground
Muon Detector is being deployed in the low-energy extension of the Surface Detector. It comprises
an array of 30 m[sup]2 plastic scintillator muon counters, buried 2.3 meters underground near the water-Cherenkov detectors, allowing for direct measurement of the muonic component of air showers in the energy range of 10[sup]16.5 − 10[sup]19 eV. To achieve an extended dynamic range, the detector operates in two modes: the binary mode, which is optimized for low muon densities, and the ADC mode, designed for high muon densities. In this contribution, we present the latest improvements to the calibration procedure of the ADC mode and to the data reconstruction of the binary mode. We assess their performance with simulations. Ključne besede: ultra-high-energy cosmic rays (UHECRs), extensive air showers, Pierre Auger Observatory, AugerPrime upgrade, Auger underground muon detector (UMD), muonic air-shower component, detector calibration, data reconstruction Objavljeno v RUNG: 30.04.2025; Ogledov: 60; Prenosov: 0
Celotno besedilo (991,94 KB) Gradivo ima več datotek! Več... |
2. Amplifying UHECR arrival direction information using mass estimators at the Pierre Auger ObservatoryLorenzo Apollonio, A. Abdul Halim, P. Abreu, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, objavljeni znanstveni prispevek na konferenci Opis: The origin of Ultra-High-Energy Cosmic Rays (UHECRs) is one of the biggest mysteries in modern astrophysics. Since UHECRs are deflected by Galactic and extragalactic magnetic fields, their arrival directions do not point to their sources. Previous analyses conducted on the arrival directions of high-energy events (E ≥ 32 EeV) recorded by the Surface Detector of the Pierre Auger Observatory have not shown significant anisotropies. The largest excess found in the first 19 years of data - at the 4.0 sigma level - is in the region around Centaurus A, and it is also the driving force of a correlation of UHECR arrival directions with a catalog of Starburst Galaxies, which is at the 3.8 sigma level. Since UHECRs are mostly nuclei, the lightest ones (least charged) are also the least deflected. While the mass of the events can be estimated better using the Fluorescence Detector of the Pierre Auger Observatory, the Surface Detector provides the necessary statistics needed for astrophysical studies. The introduction of novel mass-estimation techniques, such as machine learning models and an algorithm based on air-shower universality, will help identify high-rigidity events in the Surface Detector data of the Pierre Auger Observatory. With this work, we present how event-per-event mass estimators can help enhance the sensitivity in the search for anisotropies in the arrival directions of UHECRs at small and intermediate angular scales using simulations. Ključne besede: ultra-high-energy cosmic rays (UHECRs), extensive air showers, Pierre Auger Observatory, UHECR propagation, UHECR arrival directions, UHECR mass composition, Centaurus A radio galaxy, starburst galaxies, air-shower universality Objavljeno v RUNG: 30.04.2025; Ogledov: 61; Prenosov: 0
Celotno besedilo (2,03 MB) Gradivo ima več datotek! Več... |
3. An extremely energetic cosmic ray observed by a surface detector arrayR. U. Abbasi, M. Allen, R. Arimura, J. W. Belz, Douglas R. Bergman, S. A. Blake, K. Shin, I. J. Buckland, B. G. Cheon, Jon Paul Lundquist, 2023, izvirni znanstveni članek Opis: Cosmic rays are energetic charged particles from extraterrestrial sources, with the highest-energy events thought to come from extragalactic sources. Their arrival is infrequent, so detection requires instruments with large collecting areas. In this work, we report the detection of an extremely energetic particle recorded by the surface detector array of the Telescope Array experiment. We calculate the particle’s energy as 244 +- 29 (stat.) +51,-76 (syst.)
exa–electron volts (~40 joules). Its arrival direction points back to a void in the large-scale structure of the Universe. Possible explanations include a large deflection by the foreground magnetic field, an unidentified source in the local extragalactic neighborhood, or an incomplete knowledge of particle physics. Ključne besede: ultra-high-energy cosmic rays, telescope array, extremely energetic cosmic-ray event Objavljeno v RUNG: 23.04.2025; Ogledov: 172; Prenosov: 2
Povezava na datoteko Gradivo ima več datotek! Več... |
4. Intermediate fluence downward terrestrial gamma ray flashes as observed by the Telescope Array Surface DetectorR. U. Abbasi, N. Kieu, P. R. Krehbiel, J. W. Belz, M. M. F. Saba, W. Rison, M. A. Stanley, D. Rodeheffer, D. Mazzucco, Jon Paul Lundquist, 2024, izvirni znanstveni članek Opis: On 11 September 2021, two small thunderstorms developed over the Telescope Array Surface Detector (TASD) that produced an unprecedented number of six downward terrestrial gamma ray flashes (TGFs) within one‐hour timeframe. The TGFs occurred during the initial stage of negative cloud‐to‐ground flashes whose return strokes had increasingly large peak currents up to 223 kA, 147 GeV energy deposit in up to 25 1.2 km‐spaced surface detectors, and intermittent bursts of gamma‐rays with total durations up to 717 s. The analyses are based on observations recorded by the TASD network, complemented by data from a 3D lightning mapping array, broadband VHF interferometer, fast electric field change sensor, high‐speed video camera, and the National Lightning Detection Network. The TGFs of the final two flashes had gamma fluences of and 8, logarithmically bridging the gap between previous TASD and satellite‐based detections. The observations further emphasize the similarity between upward and downward TGF varieties, suggesting a common mechanism for their production. Ključne besede: Telescope Array Surface Detector, terrestrial gamma ray flashes, 3D lightning mapping array, broadband VHF interferometer, fast electric field change sensor, high‐speed video camera, National Lightning Detection Network, TGF fluence measurement Objavljeno v RUNG: 23.04.2025; Ogledov: 184; Prenosov: 4
Celotno besedilo (5,03 MB) Gradivo ima več datotek! Več... |
5. Multimessenger studies with the Pierre Auger ObservatoryJon Paul Lundquist, Andrej Filipčič, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, objavljeni znanstveni prispevek na konferenci Opis: The Pierre Auger Observatory, the world’s largest ultra-high-energy (UHE) cosmic ray (CR) detector, plays a crucial role in multi-messenger astroparticle physics with its high sensitivity to UHE photons and neutrinos. Recent Auger Observatory studies have set stringent limits on the diffuse and point-like fluxes of these particles, enhancing constraints on dark-matter models and UHECR sources. Although no temporal coincidences of neutrinos or photons with LIGO/Virgo gravitational wave events have been observed, competitive limits on the energy radiated in these particles have been established, particularly from the GW170817 binary neutron star merger. Additionally, correlations between the arrival directions of UHECRs and high-energy neutrinos have been explored using data from the IceCube Neutrino Observatory, ANTARES, and the Auger Observatory, providing additional neutrino flux constraints. Efforts to correlate UHE neutron fluxes with gamma-ray sources within our galaxy continue, although no significant excesses have been found. These collaborative and multi-faceted efforts underscore the pivotal role of the Auger Observatory in advancing multi-messenger astrophysics and probing the most extreme environments of the Universe. Ključne besede: high-energy particle physics, astrophysics, ultra-high energy cosmic rays, neutrinos, gravitional waves Objavljeno v RUNG: 22.04.2025; Ogledov: 182; Prenosov: 0
Celotno besedilo (5,39 MB) Gradivo ima več datotek! Več... |
6. The Pierre Auger Observatory open dataA. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, izvirni znanstveni članek Opis: The Pierre Auger Collaboration has embraced the concept of open access to their research data since its foundation, with the aim of giving access to the widest possible community. A gradual process of release began as early as 2007 when 1% of the cosmic-ray data was made public, along with 100% of the space-weather information. In February 2021, a portal was released containing 10% of cosmic-ray data collected by the Pierre Auger Observatory from 2004 to 2018, during the first phase of operation of the Observatory. The Open Data Portal includes detailed documentation about the detection and reconstruction procedures, analysis codes that can be easily used and modified and, additionally, visualization tools. Since then, the Portal has been updated and extended. In 2023, a catalog of the highest-energy cosmic-ray events examined in depth has been included. A specific section dedicated to educational use has been developed with the expectation that these data will be explored by a wide and diverse community, including professional and citizen scientists, and used for educational and outreach initiatives. This paper describes the context, the spirit, and the technical implementation of the release of data by the largest cosmic-ray detector ever built and anticipates its future developments. Ključne besede: ultra-high-energy cosmic rays (UHECRs), extensive air showers, Pierre Auger Observatory, open data, UHECR event data, space weather data, Auger Open Data Portal Objavljeno v RUNG: 03.04.2025; Ogledov: 381; Prenosov: 8
Celotno besedilo (3,12 MB) Gradivo ima več datotek! Več... |
7. Search for the anomalous events detected by ANITA using the Pierre Auger ObservatoryA. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, izvirni znanstveni članek Opis: A dedicated search for upward-going air showers at zenith angles exceeding 110° and energies E>0.1 EeV has been performed using the Fluorescence Detector of the Pierre Auger Observatory. The search is motivated by two “anomalous” radio pulses observed by the ANITA flights I and III that appear inconsistent with the standard model of particle physics. Using simulations of both regular cosmic-ray showers and upward-going events, a selection procedure has been defined to separate potential upward-going candidate events and the corresponding exposure has been calculated in the energy range [0.1–33] EeV. One event has been found in the search period between January 1, 2004, and December 31, 2018, consistent with an expected background of 0.27 ± 0.12 events from misreconstructed cosmic-ray showers. This translates to an upper bound on the integral flux of (7.2±0.2)×10[sup]−21 cm[sup]−2 sr[sup]−1 y[sup]−1 and (3.6±0.2)×10−20 cm[sup]−2 sr[sup]−1 y[sup]−1 for an E[sup]−1 and E[sup]−2 spectrum, respectively. An upward-going flux of showers normalized to the ANITA observations is shown to predict over 34 events for an E[sup]−3 spectrum and over 8.1 events for a conservative E[sup]−5 spectrum, in strong disagreement with the interpretation of the anomalous events as upward-going showers. Ključne besede: ultra-high-energy cosmic rays, extensive air showers, upward-going air showers, Pierre Auger Observatory, Fluorescence Detector, anomalous ANITA events Objavljeno v RUNG: 28.03.2025; Ogledov: 392; Prenosov: 5
Celotno besedilo (447,09 KB) Gradivo ima več datotek! Več... |
8. Subluminal pulses in the surface-scintillator detectors of AugerPrimeTobias Schulze, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, objavljeni znanstveni prispevek na konferenci Opis: In extensive air showers, the signals from the electromagnetic and muonic components typically span a few microseconds in scintillation detectors.
Neutrons are the only stable neutral hadrons over the timescale of air showers.
They lose energy exclusively through hadronic interactions and quasi-elastic scattering, which results in their high abundance at ground level.
These neutrons can produce delayed pulses in scintillation detectors, appearing up to several milliseconds after the primary shower signal.
This allows us to probe hadronic interactions in the development of air showers.
In this study, we characterize such subluminal pulses using the first measurements from the scintillator surface detectors of the AugerPrime upgrade of the Pierre Auger Observatory. Ključne besede: ultra-high-energy cosmic rays, Pierre Auger Observatory, extensive air showers, AugerPrime upgrade Objavljeno v RUNG: 28.03.2025; Ogledov: 383; Prenosov: 7
Celotno besedilo (318,77 KB) Gradivo ima več datotek! Več... |
9. Highlights from the Auger Engineering Radio ArrayBjarni Pont, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, objavljeni znanstveni prispevek na konferenci Opis: The Auger Engineering Radio Array (AERA) at the Pierre Auger Observatory is an array of 153 radio-antenna stations that measure the 30−80 MHz radio emission produced in extensive air showers in the energy range between 0.1 and 10 EeV. It has been taking data for over a decade. In this contribution, we present the recent results of AERA. We show the measurements of the depths of the shower maxima (Xmax) using the radio footprint and using interferometry, demonstrating compatibility and competitiveness with the established fluorescence detection method. We also show the measurement of the stability of the radio signal over close to a decade determined using the Galactic radio background as a calibration source, demonstrating that a radio detector can be used to lower systematic uncertainties on the energy scale of, for example, fluorescence and water-Cherenkov detectors. Ključne besede: ultra-high-energy cosmic rays, Pierre Auger Observatory, extensive air showers, radio emission Objavljeno v RUNG: 28.03.2025; Ogledov: 380; Prenosov: 5
Celotno besedilo (805,13 KB) Gradivo ima več datotek! Več... |
10. Mass composition of ultra-high-energy cosmic rays at the Pierre Auger ObservatoryThomas Fitoussi, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, objavljeni znanstveni prispevek na konferenci Opis: For the past 20 years, the Pierre Auger Observatory has collected the largest dataset of
ultra-high-energy cosmic rays (UHECRs) ever achieved using a hybrid detector. The study
of this dataset has led to numerous unexpected discoveries that enhance our understanding
of the origins of UHECRs. One of the key points in this study is their mass composition.
In this work, we will present the most recent results regarding the mass composition of UHECRs at the Pierre Auger Observatory. In particular, we will focus on the measurement of the depth
of the maximum of air-shower profiles, denoted as Xmax . This determination has been achieved through both direct measurements from the Fluorescence Detector data and the application of machine learning for estimating Xmax on an event-by-event basis using the Surface Detector data. The latter has allowed us to extend the measurement to energies up
to 100 EeV and indicates a correlation between changes in composition and three features
of the energy spectrum (ankle, instep, steepening). Moreover, the results provide evidence
of a heavy and nearly pure primary beam for energies greater than 50 EeV that is independent
of the hadronic interaction model. The implications of these findings for astrophysics and
for modelling hadronic interactions will be discussed. Ključne besede: ultra-high-energy cosmic rays, Pierre Auger Observatory, extensive air showers, UHECR mass composition Objavljeno v RUNG: 28.03.2025; Ogledov: 376; Prenosov: 8
Celotno besedilo (1,66 MB) Gradivo ima več datotek! Več... |