Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


11 - 20 / 24
First pagePrevious page123Next pageLast page
11.
Sources and transformations of particle-bound polycyclic aromatic hydrocarbons in Mexico City
L. C. Marr, Katja Džepina, Jose L. Jimenez, F. Reisen, H. L. Bethel, Janet Arey, J. S. Gaffney, N. A. Marley, Luisa T. Molina, Mario J. Molina, 2006, original scientific article

Abstract: Understanding sources, concentrations, and transformations of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere is important because of their potent mutagenicity and carcinogenicity. The measurement of particle-bound PAHs by three different methods during the Mexico City Metropolitan Area field campaign in April 2003 presents a unique opportunity for characterization of these compounds and intercomparison of the methods. The three methods are ( 1) collection and analysis of bulk samples for time-integrated gas- and particle-phase speciation by gas chromatography/ mass spectrometry; ( 2) aerosol photoionization for fast detection of PAHs on particles' surfaces; and ( 3) aerosol mass spectrometry for fast analysis of size and chemical composition. This research represents the first time aerosol mass spectrometry has been used to measure ambient PAH concentrations and the first time that fast, real-time methods have been used to quantify PAHs alongside traditional filter-based measurements in an extended field campaign. Speciated PAH measurements suggest that motor vehicles and garbage and wood burning are important sources in Mexico City. The diurnal concentration patterns captured by aerosol photoionization and aerosol mass spectrometry are generally consistent. Ambient concentrations of particle-phase PAHs typically peak at similar to 110 ng m(-3) during the morning rush hour and rapidly decay due to changes in source activity patterns and dilution as the boundary layer rises, although surface-bound PAH concentrations decay faster. The more rapid decrease in surface versus bulk PAH concentrations during the late morning suggests that freshly emitted combustion-related particles are quickly coated by secondary aerosol material in Mexico City's atmosphere and may also be transformed by heterogeneous reactions.
Keywords: aerosol mass-spectrometer, aerodynamic diameter measurements, oxygenated organic aerosols, relative rate constants
Published in RUNG: 12.04.2021; Views: 2106; Downloads: 0
This document has many files! More...

12.
Evaluation of recently-proposed secondary organic aerosol models for a case study in Mexico City
Katja Džepina, R. M. Volkamer, Sasha Madronich, P. Tulet, I. M. Ulbrich, Q. Zhang, C. D. Cappa, P. J. Ziemann, Jose L. Jimenez, 2009, original scientific article

Abstract: Recent field studies have found large discrepancies in the measured vs. modeled SOA mass loadings in both urban and regional polluted atmospheres. The reasons for these large differences are unclear. Here we revisit a case study of SOA formation in Mexico City described by Volkamer et al. (2006), during a photochemically active period when the impact of regional biomass burning is minor or negligible, and show that the observed increase in OA/Delta CO is consistent with results from several groups during MILAGRO 2006. Then we use the case study to evaluate three new SOA models: 1) the update of aromatic SOA yields from recent chamber experiments (Ng et al., 2007); 2) the formation of SOA from glyoxal (Volkamer et al., 2007a); and 3) the formation of SOA from primary semivolatile and intermediate volatility species (P-S/IVOC) (Robinson et al., 2007). We also evaluate the effect of reduced partitioning of SOA into POA (Song et al., 2007). Traditional SOA precursors (mainly aromatics) by themselves still fail to produce enough SOA to match the observations by a factor of similar to similar to 7. The new low-NOx aromatic pathways with very high SOA yields make a very small contribution in this high-NOx urban environment as the RO2 center dot+NO reaction dominates the fate of the RO2 center dot radicals. Glyoxal contributes several mu g m(-3) to SOA formation, with similar timing as the measurements. P-S/IVOC are estimated from equilibrium with emitted POA, and introduce a large amount of gas-phase oxidizable carbon that was not in models before. With the formulation in Robinson et al. (2007) these species have a high SOA yield, and this mechanism can close the gap in SOA mass between measurements and models in our case study. However the volatility of SOA produced in the model is too high and the O/C ratio is somewhat lower than observations. Glyoxal SOA helps to bring the O/C ratio of predicted and observed SOA into better agreement. The sensitivities of the model to some key uncertain parameters are evaluated.
Keywords: polycyclic aromatic-hydrocarbons, positive matrix factorization, mass-spectrometry, volatility measurements
Published in RUNG: 11.04.2021; Views: 1982; Downloads: 0
This document has many files! More...

13.
Evolution of organic aerosols in the atmosphere
Jose L. Jimenez, M. R. Canagaratna, N. M. Donahue, A. S. H. Prevot, Q. Zhang, J. H. Kroll, P. F. DeCarlo, J. David Allan, H. Coe, Katja Džepina, 2009, original scientific article

Abstract: Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework describing the atmospheric evolution of OA that is constrained by high–time-resolution measurements of its composition, volatility, and oxidation state. OA and OA precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA), with concentrations comparable to those of sulfate aerosol throughout the Northern Hemisphere. Our model framework captures the dynamic aging behavior observed in both the atmosphere and laboratory: It can serve as a basis for improving parameterizations in regional and global models.
Keywords: secondary organic aerosol, source apportionment, aerodyne aerosol mass spectrometer, global field measurements, laboratory experiments
Published in RUNG: 11.04.2021; Views: 2131; Downloads: 0
This document has many files! More...

14.
15.
The role of charge transfer at reduced graphene oxide/organic semiconductor interface on the charge transport properties
Gvido Bratina, Egon Pavlica, 2019, original scientific article

Abstract: The effect of 1-pyrenesulfonicacid sodium salt (1-PSA), tetracyanoethylene (TCNE) and tetrafluoro- tetracyanoquinodimethane (F4-TCNQ) on charge transport properties of reduced graphene oxide (RGO) is examined by measuring the transfer characteristics of field-effect transistors and co-planar time-of-flight photocurrent technique. Evidence of p-type doping and a reduction of mobility of electrons in RGO upon deposition of these materials is observed. Time-resolved photocurrent measurements show a reduction in elec- tron mobility even at submonolayer coverage of these materials. The variation of transit time with different coverages reveals that electron mobility decreases with increasing the surface coverage of 1-PSA, TCNE and F4- TCNQ to a certain extent, while at higher coverage the electron mobility is slightly recovered. All three molecules show the same trend in charge carrier mobility variation with coverage, but with different magnitude. Among all three molecules, 1-PSA acts as weak electron acceptor compared to TCNE and F4-TCNQ. The additional fluorine moieties in F4-TCNQ provides excellent electron withdrawing capability compared to TCNE. The experimental results are consistent with the density functional theory calculations.
Keywords: organic semiconductors, reduced graphene oxide, time-resolved photocurrent measurements, organic thin film transistors
Published in RUNG: 28.10.2019; Views: 3469; Downloads: 1
This document has many files! More...

16.
Adding dimensions to the immersion testing of magnesium corrosion
Lars Wadsö, Dmytro Orlov, 2018, published scientific conference contribution

Keywords: magnesium, corrosion, isothermal calorimetry, pressure measurements
Published in RUNG: 11.03.2019; Views: 2962; Downloads: 0
This document has many files! More...

17.
18.
Retrieval of Vertical Mass Concentration Distributions—Vipava Valley Case Study
Longlong Wang, Samo Stanič, Klemen Bergant, William Eichinger, Griša Močnik, Luka Drinovec, Janja Vaupotič, Miloš Miler, Mateja Gosar, Asta Gregorič, 2019, original scientific article

Abstract: Aerosol vertical profiles are valuable inputs for the evaluation of aerosol transport models, in order to improve the understanding of aerosol pollution ventilation processes which drive the dispersion of pollutants in mountainous regions. With the aim of providing high-accuracy vertical distributions of particle mass concentration for the study of aerosol dispersion in small-scale valleys, vertical profiles of aerosol mass concentration for aerosols from different sources (including Saharan dust and local biomass burning events) were investigated over the Vipava valley, Slovenia, a representative hot-spot for complex mixtures of different aerosol types of both anthropogenic and natural origin. The analysis was based on datasets taken between 1–30 April 2016. In-situ measurements of aerosol size, absorption, and mass concentration were combined with lidar remote sensing, where vertical profiles of aerosol concentration were retrieved. Aerosol samples were characterized by SEM-EDX, to obtain aerosol morphology and chemical composition. Two cases with expected dominant presence of different specific aerosol types (mineral dust and biomass-burning aerosols) show significantly different aerosol properties and distributions within the valley. In the mineral dust case, we observed a decrease of the elevated aerosol layer height and subsequent spreading of mineral dust within the valley, while in the biomass-burning case we observed the lifting of aerosols above the planetary boundary layer (PBL). All uncertainties of size and assumed optical properties, combined, amount to the total uncertainty of aerosol mass concentrations below 30% within the valley. We have also identified the most indicative in-situ parameters for identification of aerosol type.
Keywords: valley air pollution, aerosol vertical distributions, lidar remote sensing, in-situ measurements, aerosol identification
Published in RUNG: 09.01.2019; Views: 4108; Downloads: 113
.pdf Full text (7,43 MB)

19.
STUDY OF ATMOSPHERIC AEROSOL PROPERTIES IN THE VIPAVA VALLEY
Longlong Wang, doctoral dissertation

Abstract: The aim of the dissertation was to study aerosol loading distributions and properties over the Vipava valley, a representative hot-spot for complex mixtures of different aerosol types of both anthropogenic and natural origin. An infrared Mie and a two-wavelength polarization Raman lidar systems were used as main detection tools. The polarization Raman lidar, which provides the capability to extract the extinction coefficient, backscatter coefficients, depolarization ratio, backscatter Ångström exponent, lidar ratio and water vapor mixing ratio profiles, was itself designed, built and calibrated as a part of this thesis. Lidar data, combined with in-situ measurements, was used to determine detailed information on different aerosol types. Vertical profiles of aerosol mass concentration were extracted from the Mie lidar data taken in April 2016, where the in-situ measurements of aerosol size distribution and number concentration as well as aerosol absorption coefficient and black carbon mass concentration were used to estimate the mass extinction efficiency (MEE). Aerosol morphology and chemical composition determined by SEM-EDX on sampled particles were used for the identification of primary aerosol types. Two cases with different atmospheric conditions (long range mineral dust transport and local biomass burning) and different expected the dominant presence of specific aerosol types (mineral dust and soot) were investigated in more detail. They revealed significantly different aerosol properties and distributions within the valley, affecting radiative heat exchange. A more detailed investigation of aerosol properties throughout the troposphere in different atmospheric conditions was made possible by the two-wavelength polarization Raman lidar system, deployed in Ajdovščina (town of Vipava valley) from September 2017. Using its aerosol identification capabilities, based on particle depolarization ratio and lidar ratio measurements, it was possible to identify predominant aerosol types in the observed atmospheric structures, for example in different atmospheric layers in the case of the stratified atmosphere. Primary anthropogenic aerosols within the valley were found to be mainly emitted from two sources: individual domestic heating systems, which mostly use biomass fuel and traffic. Natural aerosols, transported over large distances, such as mineral dust and sea salt, were observed both above and entering into the planetary boundary layer. Backscatter contribution of each aerosol type was separated and the corresponding extinction contribution was derived from lidar observations.
Keywords: Vipava valley, aerosol distribution, aerosol characterization, lidar remote sensing, in-situ measurements, aerosol loading.
Published in RUNG: 23.10.2018; Views: 7227; Downloads: 157
.pdf Full text (29,39 MB)

20.
Search done in 0.05 sec.
Back to top