Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


171 - 180 / 349
First pagePrevious page14151617181920212223Next pageLast page
171.
Correlation between FeCl2 electrolyte conductivity and electrolysis efficiency
Uroš Luin, Matjaž Valant, Iztok Arčon, 2022, published scientific conference contribution abstract

Abstract: The electrolysis efficiency is an important aspect of the Power-to-Solid energy storage technology (EST) based on the iron chloride electrochemical cycle [1]. This cycle employs an aqueous FeCl2 catholyte solution for the electro-reduction of iron. The metal iron deposits on the cathode. The energy is stored as a difference in the redox potential of iron species. Hydrogen, as an energy carrier, is released on demand over a fully controlled hydrogen evolution reaction between metallic Fe0 and HCl (aq) [1]. Due to these characteristics, the cycle is suitable for long-term high-capacity and high-power energy storage. In a previous work [2] we revealed that the electrolyte conductivity linearly increases with temperature. Contrary, the correlation between the electrolyte concentration and efficiency is not so straightforward. Unexpectedly small efficiency variations were found between 1 and 2.5 mol dm-3 FeCl2 (aq) followed by an abrupt efficiency drop at higher concentrations. To explain the behavior of the observed trends and elucidate the role of FeCl2 (aq) complex ionic species we performed in situ X-ray absorption studies. We made a dedicated experimental setup, consisting of a tubular oven and PMMA liquid absorption cell, and performed the measurements at the DESY synchrotron P65 beamline. The XAS investigation covered XANES and EXAFS analyses of FeCl2 (aq) at different concentrations (1 - 4 molL-1) and temperatures (25 - 80 °C). We found that at low temperature and low FeCl2 concentration the octahedral first coordination sphere around Fe is occupied by one Cl ion at a distance of 2.33 (±0.02) Å and five water molecules at a distance of 2.095 (±0.005) Å [3]. The structure of the ionic complex gradually changes with an increase in temperature and/or concentration. The apical water molecule is substituted by a chlorine ion to yield a neutral Fe[Cl2(H2O)4]0. The transition from the single charged Fe[Cl(H2O)5]+ to the neutral Fe[Cl2(H2O)4]0 causes a significant drop in the solution conductivity, which well correlates with the existing conductivity models [3]. [1] M. Valant, “Procedure for electric energy storage in solid matter. United States Patent and Trademark Office. Patent No. US20200308715,” Patent No. US20200308715, 2021. [2] U. Luin and M. Valant, “Electrolysis energy efficiency of highly concentrated FeCl2 solutions for power-to-solid energy storage technology,” J. Solid State Electrochem., vol. 26, no. 4, pp. 929–938, Apr. 2022, doi: 10.1007/S10008-022-05132-Y. [3] U. Luin, I. Arčon, and M. Valant, “Structure and Population of Complex Ionic Species in FeCl2 Aqueous Solution by X-ray Absorption Spectroscopy,” Molecules, vol. 27, no. 3, 2022, doi: 10.3390/molecules27030642.
Keywords: Iron chloride electrochemical cycle, Power-to-Solid energy storage, XANES, EXAFS, electrical conductivity, electrolyte complex ionic species structure and population
Published in RUNG: 26.09.2022; Views: 1491; Downloads: (1 vote)
This document has many files! More...

172.
The conformational plasticity of the selectivity filter methionines controls the in-cell Cu(I) uptake through the CTR1 transporter
Pavel Janoš, Jana Aupič, Sharon Ruthstein , Alessandra Magistrato, 2022, original scientific article

Abstract: Copper is a trace element vital to many cellular functions. Yet its abnormal levels are toxic to cells, provoking a variety of severe diseases. The high affinity copper transporter 1 (CTR1), being the main in-cell copper [Cu(I)] entry route, tightly regulates its cellular uptake via a still elusive mechanism. Here, all-atoms simulations unlock the molecular terms of Cu(I) transport in eukaryotes disclosing that the two methionine (Met) triads, forming the selectivity filter, play an unprecedented dual role both enabling selective Cu(I) transport and regulating its uptake rate thanks to an intimate coupling between the conformational plasticity of their bulky side chains and the number of bound Cu(I) ions. Namely, the Met residues act as a gate reducing the Cu(I) import rate when two ions simultaneously bind to CTR1. This may represent an elegant autoregulatory mechanism through which CTR1 protects the cells from excessively high, and hence toxic, in-cell Cu(I) levels. Overall, our outcomes resolve fundamental questions in CTR1 biology and open new windows of opportunity to tackle diseases associated with an imbalanced copper uptake.
Keywords: copper, membrane transporter, molecular dynamics, QM/MM, free energy
Published in RUNG: 15.09.2022; Views: 1351; Downloads: 0
This document has many files! More...

173.
174.
175.
176.
Carbon nanoparticles assisted energy transport mechanism in leaves: A thermal lens study
Mohanachandran Nair Sindhu Swapna, 2019, original scientific article

Abstract: In the world of increasing population and pollution due to carbon emissions, the research for effective utilization of futile diesel soot for fruitful applications has become a necessity for a sustainable development. The contribution to pollution from vehicles and industries due to the aging of engines has caused a crisis. Carbon nanoparticles (CNPs) have been the subject of interest because of their good physical, chemical, and biological properties. The present work investigates the role of CNPs produced by internal combustion engines on the energy transport mechanism among leaf pigments using the sensitive and nondestructive single beam thermal lens technique. The studies reveal the absorption changes by various chlorophyll pigments with the concentration of CNPs sprayed on the leaves. Though for low concentrations CNPs lower the photon absorbance by chlorophyll pigments, the effect gets reversed at higher concentrations. The variation of thermal diffusivity with CNP concentration and its role in the energy transport mechanism among chlorophyll pigments are also studied. It is found that CNP concentrations of 625-2500mg/l are good for better intra-pigment energy transport leading to increased rate of photosynthesis and plant yield and thereby helping in attaining food security. The variation of CNP assisted energy transport among leaf pigments on the production of nicotinamide adenine dinucleotide phosphate (NADPH) and carbohydrates is also studied with ultraviolet (UV) and near-infrared (NIR) spectroscopy.
Keywords: carbon nanoparticle, soot, energy transport, thermal lens, photosynthesis
Published in RUNG: 05.07.2022; Views: 1126; Downloads: 0
This document has many files! More...

177.
Studies of cosmic rays in our Galaxy with Cherenkov Telescope Array : diploma seminar
Zoja Rokavec, 2022, research project (high school)

Keywords: cosmic rays, cosmic PeVatrons, Cherenkov Telescope Array, very-high-energy gamma-rays
Published in RUNG: 15.06.2022; Views: 1314; Downloads: 0
This document has many files! More...

178.
Multi-messenger studies with the Pierre Auger Observatory
Lukas Zehrer, Andrej Filipčič, Gašper Kukec Mezek, Jon Paul Lundquist, Samo Stanič, Marta Trini, Serguei Vorobiov, Marko Zavrtanik, Danilo Zavrtanik, 2021, published scientific conference contribution

Abstract: Over the past decade the multi-messenger astrophysics has emerged as a distinct discipline, providing unique insights into the properties of high-energy phenomena in the Universe. The Pierre Auger Observatory, located in Malargüe, Argentina, is the world’s largest cosmic ray detector sensitive to photons, neutrinos, and hadrons at ultra-high energies. Using its data, stringent limits on photon and neutrino fluxes at EeV energies have been obtained. The collaboration uses the excellent angular resolution and the neutrino identification capabilities of the Observatory for follow-up studies of events detected in gravitational waves or other messengers, through cooperation with global multi-messenger networks. We present a science motivation together with an overview of the multi-messenger capabilities and results of the Pierre Auger Observatory.
Keywords: high-energy cosmic phenomena, multi-messenger astrophysical studies, cosmic rays, gamma-rays, neutrinos, Pierre Auger Observatory
Published in RUNG: 06.05.2022; Views: 1457; Downloads: 0
This document has many files! More...

179.
180.
Search done in 0.06 sec.
Back to top