Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 5 / 5
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Performance analysis of high-spectral-resolution lidar with/without laser seeding technique for measuring aerosol optical properties
Fengjia Gao, Fei Gao, Gaipan Li, Fan Yang, Li Wang, Song Yuehui, Dengxin Hua, Samo Stanič, 2024, izvirni znanstveni članek

Opis: High-spectral-resolution lidar (HSRL) is a powerful tool for aerosol measurements. With/without laser seeding technique in the transmitted laser, the HSRL can be distinguished as the single-longitudinal-mode (SLM) HSRL or the multi-longitudinal-mode (MLM) HSRL, and the Mach-Zehnder interferometer (MZI) with periodic transmittance function can be used as the spectral discriminator in both the SLM HSRL and MLM HSRL. To in-depth knowledge of the respective advantages of the SLM HSRL and MLM HSRL for measuring aerosol optical properties, the working principle, optimal parameter setting, and detection performance of the SLM HSRL and MLM HSRL are analyzed and discussed in detail, respectively. The working principle of the SLM HSRL and MLM HSRL indicate that the effective transmittance of MZI is the important parameter of data retrieval, the main source of retrieval uncertainties, and the key factor of MZI optical path difference (OPD) settings. To ensure that the MZI can achieve the preferable separation for aerosol Mie scattering signals and molecular Rayleigh scattering signals, the optimal OPDs of MZI are set at 165 mm and 1000 mm in the SLM HSRL and MLM HSRL from the aspects of the effective transmittance of MZI and the spectral discrimination ratio (SDR). Besides, to analyze the influence of frequency difference and divergence angle for the detection performance of HSRL, the effective transmittance of MZI and SDR are simulated and the results show that the MLM HSRL has higher requirements for the environmental parameters and the echo beam collimation than the SLM HSRL. Moreover, the HSRLs with SLM and MLM transmitted lasers are constructed in Xi'an for measuring aerosol optical properties. The preliminary measurement results show that the range square corrected signal (RSCS) of Rayleigh channel is smaller than that of Mie channel in both the SLM HSRL and MLM HSRL, while the difference between RSCS of Rayleigh channel and RSCS of Mie channel in the SLM HSRL is larger than that in the MLM HSRL, and the detection range of the SLM HSRL is lower than that of the MLM HSRL.
Ključne besede: aerosol optical properties, high-spectral-resolution lidar, single-longitudinal-mode, multi-longitudinal-mode, spectral discrimination ratio
Objavljeno v RUNG: 28.02.2024; Ogledov: 229; Prenosov: 2
URL Povezava na datoteko
Gradivo ima več datotek! Več...

2.
Aerosol complex refractive index retrieval in the Paris urban area and its forested surroundings during the ACROSS field campaign : variability and constraint for direct radiative effect estimation in regional models
Ludovico Di Antonio, Griša Močnik, 2023, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: The complex refractive index (CRI) is one of the key parameter driving aerosol spectral optical properties and direct radiative effects (DRE). Its value and spectral variation under different conditions, such as anthropogenic− and biogenic−dominated environments and anthropogenic−biogenic mixing situations, remains not fully understood. As a consequence, oversimplified representations of aerosol optical properties are generally used in climate models. Therefore, measurements of aerosol CRI in different environments and their inclusion in models are needed. The field observations from the ACROSS campaign, performed in June-July 2022 in the Ile de France region, are used in this study to deepen the knowledge of aerosol optical properties, aiming to improve the aerosol representation in the CHIMERE model and provide the best constraint for DRE simulations. Measurements obtained both at the Paris city center and the Rambouilllet rural forest sites during ACROSS are considered, in order to explore the CRI variability from anthropogenic−dominated to biogenic−dominated environments, including anthropogenic−biogenic mixing situations. The CRI retrievals at seven different wavelengths, performed by combining the Mie theory with optical and size distribution measurements, are representative of different atmospheric conditions, aerosol loadings as well as type and chemical compositions. In fact, the June-July 2022 period was characterized by highly diversified weather conditions: 1) two strong heatwaves, promoting SOA build-up and favoring the export of the Paris pollution plume towards the forest site; 2) Saharan dust events transported from the upper atmosphere to the ground; 3) biomass burning episode; 4) periods with reduced anthropogenic influence. The CRI retrievals under these different conditions and their link to particulate chemical composition is investigated. Hence, the CRI dataset presented here constitutes a unique dataset from which models can benefit to validate and constrain simulations and DRE estimations, under both urban and biogenic emissions influence. These data, in conjunction with those from the aircraft observations during ACROSS, are used to initialize and perform sensitivity studies on the aerosol DRE, using the CHIMERE−WRF coupled model, the OPTSIM model for the aerosol optical properties and the Rapid Radiative Transfer Model for GCMs (RRTMG).Keywords: Complex refractive index, direct radiative effect, aerosol mixing, urban, forest
Ključne besede: aerosol optical properties, refractive index
Objavljeno v RUNG: 21.12.2023; Ogledov: 508; Prenosov: 2
.pdf Celotno besedilo (293,28 KB)

3.
4.
5.
Iskanje izvedeno v 0.03 sek.
Na vrh