31. Characterization of Cu and Zr modified TiO[sub]2 photocatalysts by photothermal beam deflection spectrometryMahmoud Abdelhamid, Dorota Korte, Humberto Cabrera, Zeinab Ebrahimpour, Olena Pliekhova, Urška Lavrenčič Štangar, Mladen Franko, 2021, objavljeni povzetek znanstvenega prispevka na konferenci Ključne besede: photocatalysts, TiO2, Cu/Zr, photodegradation, material characterization, photothermal spectrometry Objavljeno v RUNG: 23.11.2021; Ogledov: 4513; Prenosov: 0 Gradivo ima več datotek! Več... |
32. Thermo-optical characterization of Cu- and Zr-modified TiO[sub]2 photocatalysts by beam deflection spectrometryMahmoud Abdelhamid, Dorota Korte, Humberto Cabrera, Olena Pliekhova, Zeinab Ebrahimpour, Urška Lavrenčič Štangar, Mladen Franko, 2021, izvirni znanstveni članek Ključne besede: photocatalysts, TiO2, Cu/Zr, photodegradation, material characterization, photothermal spectrometry Objavljeno v RUNG: 23.11.2021; Ogledov: 3193; Prenosov: 100
Povezava na celotno besedilo Gradivo ima več datotek! Več... |
33. Chemical (in)stability of interfaces between different metals and Bi[sub]2Se[sub]3 topological insulatorKatja Ferfolja, Mattia Fanetti, Sandra Gardonio, Matjaž Valant, 2018, objavljeni povzetek znanstvenega prispevka na konferenci Opis: In recent years a classification of materials based on their topological order gained popularity due to the discovery of materials with special topological character – topological insulators (TI). TI have different band structure than regular insulators or conductors. They are characterized by a band gap in the bulk of the material, but at the surface they possess conductive topological surface states (TSS) that cross the Fermi level. TSS are a consequence of the non-trivial bulk band structure and have properties that differ from ordinary surface states. They are robust toward contamination and deformation of the surface. Additionally, they are also spin polarized, which means that an electron spin is locked to a crystal momentum and, therefore, backscattering during transport is suppressed [1]. Due to their specific properties the TI could be used in fields of spintronics, quantum computing and catalysis [2].
The investigation of the interfaces between metals and the TI has not been given much attention even though its characterization is interesting from fundamental physics and applicative point of view. (In)stability of the contacts with metal electrodes, in a form of a chemical reaction or diffusion, has to be taken into account since it can affect the transport properties of the material or increase the contact resistance. Our research is dedicated to the study of the metal/TI interfaces, in particular to Bi2Se3 with deposited metals that are relevant for electrical contacts (Au, Ag, Pt, Cr, Ti). The thermal and chemical stability of the interfaces are of fundamental importance for understanding the contact behavior, therefore, we focused our work to the characterization of these properties. The metal/TI interfaces are investigated mainly with an electron microscopy (SEM, TEM, STM), EDX microanalysis and XRD. Our previous studies showed that the interface between Bi2Se3, and Ag deposited either chemically or from a vapor phase, results in the formation of new phases already at room temperature [3]. On the contrary, Au deposited on the Bi2Se3 surface shows very limited reactivity and is stable at RT, but diffusion and coalescence of the metal are observed starting from 100 °C [4]. In this contribution, we will present further characterization on the evolution of the Ag/Bi2Se3 and Au/Bi2Se3 interfaces, show preliminary results about recently investigated systems (Pt/Bi2Se3, Ti/Bi2Se3) and compare the thermal and chemical stability of the systems under investigation. Ključne besede: thermal lens spectrometry, photothermal beam deflection spectroscopy, dye remediation, photothermal technique, photocatalytic degradation, reactive blue 19, TiO2 modification Objavljeno v RUNG: 20.08.2021; Ogledov: 3887; Prenosov: 0 Gradivo ima več datotek! Več... |
34. A multi-thermal-lens approach to evaluation of multi-pass probe beam configuration in thermal lens spectrometryHumberto Cabrera, Leja Goljat, Dorota Korte, Ernesto Marin, Mladen Franko, izvirni znanstveni članek Opis: In this work, a recently proposed thermal lens instrument based on multi-pass probe beam concept is investigated and described as a multi-thermal-lens equivalent system. A simulation of the photothermal lens signal formation in a multi-thermal-lens equivalent configuration of the system is performed and validated by comparing the experimental signals of single, dual and ten-pass configurations to theoretically calculated values. The theoretically predicted enhancement of the signal is 9 to 10-fold for a weak thermal lens when comparing the ten-pass configuration with the conventional single-pass thermal lens system. Experimentally achieved signal enhancement in the ten-pass system is 8.3 for pure ethanol sample and between 8 and 9 for solutions with different concentrations of the Fe(II) - 1,10-Phenanthroline complex. Additionally, a value of 9.1 was calculated as the ratio of the slopes of the calibration lines obtained using the ten-pass and single-pass configurations. The achieved limit of detection for determination of Fe(II), in the ten-pass configuration, was 0.4 µgL-1, with a relative standard deviation around 4.5%, which compares favorably with previously reported results for TLS determination of Fe(II) in thin samples using low excitation power. For the multi-pass configuration the linear range of measurement is reduced when compared to the single-pass configuration. This is explained by the theoretical analysis of the photothermal signal under multi-pass condition, which shows the important contribution of the nonlinear term in the theoretical expression for the photothermal signal. The ten-pass configuration, which is presented and validated experimentally for the first time, offers important signal enhancement needed in recently developed TLS instruments with tunable, low power excitation sources. Ključne besede: Thermal lens spectrometry, Photothermal detection, Trace determination, Chemical sensor Objavljeno v RUNG: 10.12.2019; Ogledov: 5092; Prenosov: 0 Gradivo ima več datotek! Več... |
35. |
36. |
37. Photothermal lens technique: a comparison between conventional and self-mixing schemesHumberto Cabrera, Imrana Ashraf, Fatima Matroodi, Evelio E. Ramírez-Miquet, Jehan Akbar, Jose Juan Suárez-Vargas, John Fredy Barrera Ramírez, Dorota Korte, Hanna Budasheva, Joseph J. Niemela, 2019, izvirni znanstveni članek Opis: This work focuses on assessing the analytical capabilities of a new photothermal lens method based on the self-mixing effect to reliably measure metallic traces in water-ethanol solutions. We compare it with the conventional thermal lens scheme, considering the low detection limit and versatility. A theoretical model is presented to describe the laser power variations as a function of the photothermal parameters of the analyzed sample. The experimental results demonstrate that the laser intensity variations, induced by the external optical feedback, are governed by
the photothermal lens effect. Measurements of Fe(II)-1,10-phenanthroline in water–ethanol solutions show a favourable correspondence and agreement with the theory. The low detection limits obtained by the two analytic techniques also agree very well. Nevertheless, our instrument presents advantages regarding compactness and simplicity, suggesting that this platform could be potentially useful as a robust analytical tool for metallic trace detection. In addition, calibration of the method is performed by measuring the so-called self-mixing constant. Ključne besede: thermal lens, photothermal spectroscopy, self-mixing effect, trace detection Objavljeno v RUNG: 05.04.2019; Ogledov: 5925; Prenosov: 0 Gradivo ima več datotek! Več... |
38. Determination of Dissolved Iron Redox Species in Freshwater Sediment using DGT Technique Coupled to BDSHanna Budasheva, Aleksander Kravos, Dorota Korte, Arne Bratkič, Yue Gao, Mladen Franko, 2019, izvirni znanstveni članek Opis: In this work we have developed a novel method for determination of iron redox species by the use of diffusive gradients in thin-film (DGT) technique coupled to photothermal beam deflection spectroscopy (BDS). The combination of both methods achieved low limit of detection (LOD) of 0.14 μM for Fe (II) ions. The total Fe concentration determined in the Vrtojbica river sediment (Slovenia, Rožna Dolina, 5000 Nova Gorica) was 49.3 μgL–1. The Fe (II) and Fe (III) concentra- tion amounted to 12.8 μgL–1 and 39.9 μgL–1, respectively. Such an approach opens new opportunities for monitoring the content of iron species in natural waters and sediments and provides highly sensitive chemical analysis and an accurate qualitative and quantitative characteristic of the materials under study. Ključne besede: Beam deflection spectroscopy, diffusive gradients in thin-film technique, iron redox species, photothermal techniques, sediment Objavljeno v RUNG: 26.02.2019; Ogledov: 5351; Prenosov: 117
Celotno besedilo (452,58 KB) |
39. Optimization of DGT technique for determination of iron species in natural water and sediments by photothermal beam deflection spectroscopyHanna Budasheva, Arne Bratkič, Dorota Korte, Mladen Franko, 2018, objavljeni povzetek znanstvenega prispevka na konferenci Ključne besede: beam deflection spectroscopy, diffusive gradients in thin-film technique, iron redox species, photothermal techniques, natural water, sediments Objavljeno v RUNG: 23.11.2018; Ogledov: 5507; Prenosov: 0 Gradivo ima več datotek! Več... |
40. |