1. Periodic gamma-ray modulation of the blazar PG 1553+113 confirmed by Fermi-LAT and multiwavelength observationsS. Abdollahi, L. Baldini, G. Barbiellini, R. Bellazzini, B. Berenji, E. Bissaldi, R. D. Blandford, R. Bonino, P. Bruel, Gabrijela Zaharijas, 2024, original scientific article Abstract: Abstract
A 2.1 yr periodic oscillation of the gamma-ray flux from the blazar PG 1553+113 has previously been tentatively identified in ∼7 yr of data from the Fermi Large Area Telescope. After 15 yr of Fermi sky-survey observations, doubling the total time range, we report >7 cycle gamma-ray modulation with an estimated significance of 4σ against stochastic red noise. Independent determinations of oscillation period and phase in the earlier and the new data are in close agreement (chance probability <0.01). Pulse timing over the full light curve is also consistent with a coherent periodicity. Multiwavelength new data from Swift X-Ray Telescope, Burst Alert Telescope, and UVOT, and from KAIT, Catalina Sky Survey, All-Sky Automated Survey for Supernovae, and Owens Valley Radio Observatory ground-based observatories as well as archival Rossi X-Ray Timing Explorer satellite-All Sky Monitor data, published optical data of Tuorla, and optical historical Harvard plates data are included in our work. Optical and radio light curves show clear correlations with the gamma-ray modulation, possibly with a nonconstant time lag for the radio flux. We interpret the gamma-ray periodicity as possibly arising from a pulsational accretion flow in a sub-parsec binary supermassive black hole system of elevated mass ratio, with orbital modulation of the supplied material and energy in the jet. Other astrophysical scenarios introduced include instabilities, disk and jet precession, rotation or nutation, and perturbations by massive stars or intermediate-mass black holes in polar orbit. Keywords: gamma rays, AGNs Published in RUNG: 13.01.2025; Views: 179; Downloads: 0 Full text (2,22 MB) This document has many files! More... |
2. Prospects for annihilating dark matter from M31 and M33 observations with the Cherenkov Telescope ArrayMiltiadis Michailidis, Lorenzo Marafatto, Denys Malyshev, Fabio Iocco, Gabrijela Zaharijas, Olga Sergijenko, Maria Isabel Bernardos, Christopher Eckner, Alexey Boyarsky, Anastasia Sokolenko, Andrea Santangelo, 2023, original scientific article Abstract: Abstract
M31 and M33 are the closest spiral galaxies and the largest members (together with the Milky Way) of the Local group, which makes them interesting targets for indirect dark matter searches. In this paper we present studies of the expected sensitivity of the Cherenkov Telescope Array (CTA) to an annihilation signal from weakly interacting massive particles from M31 and M33. We show that a 100 h long observation campaign will allow CTA to probe annihilation cross-sections up to 〈συ〉 ≈ 5·10-25 cm3 s-1 for the τ
+
τ
- annihilation channel (for M31, at a DM mass of 0.3 TeV), improving the current limits derived by HAWC by up to an order of magnitude.
We present an estimate of the expected CTA sensitivity, by also taking into account the contributions of the astrophysical background and other possible sources of systematic uncertainty.
We also show that CTA might be able to detect the extended emission from the bulge of M31, detected at lower energies by the Fermi/LAT. Keywords: dark matter, gamma rays, Cherenkov Telescope Array, i Published in RUNG: 13.01.2025; Views: 155; Downloads: 0 Link to file This document has many files! More... |
3. Multi-messenger and transient astrophysics with the Cherenkov Telescope ArrayŽ. Bošnjak, Anthony M. Brown, Alessandro Carosi, M. Chernyakova, Pierre Cristofari, F. Longo, A. López Oramas, M. Santander, Serguei Vorobiov, Danilo Zavrtanik, 2021, other component parts Abstract: The discovery of gravitational waves, high-energy neutrinos or the very-high-energy counterpart of gamma-ray bursts has revolutionized the high-energy and transient astrophysics community. The development of new instruments and analysis techniques will allow the discovery and/or follow-up of new transient sources. We describe the prospects for the Cherenkov Telescope Array (CTA), the next-generation ground-based gamma-ray observatory, for multi-messenger and transient astrophysics in the decade ahead. CTA will explore the most extreme environments via very-high-energy observations of compact objects, stellar collapse events, mergers and cosmic-ray accelerators. Keywords: multi-messenger astrophysics, gravitational waves, very-high-energy (VHE) gamma rays, cosmic rays, VHE neutrinos, transient astrophysical phenomena, Cherenkov Telescope Array Observatory Published in RUNG: 13.01.2025; Views: 180; Downloads: 0 Full text (6,21 MB) This document has many files! More... |
4. Probing extreme environments with the Cherenkov Telescope ArrayC. Boisson, Anthony M. Brown, A. Burtovoi, M. Cerruti, M. Chernyakova, T. Hassan, J.-P. Lenain, Marina Manganaro, Serguei Vorobiov, Danilo Zavrtanik, 2021, other component parts Abstract: The physics of the non-thermal Universe provides information on the acceleration mechanisms in extreme environments, such as black holes and relativistic jets, neutron stars, supernovae or clusters of galaxies. In the presence of magnetic fields, particles can be accelerated towards relativistic energies. As a consequence, radiation along the entire electromagnetic spectrum can be observed, and extreme environments are also the most likely sources of multi-messenger emission. The most energetic part of the electromagnetic spectrum corresponds to the very-high-energy (VHE, E>100 GeV) gamma-ray regime, which can be extensively studied with ground based Imaging Atmospheric Cherenkov Telescopes (IACTs). The results obtained by the current generation of IACTs, such as H.E.S.S., MAGIC, and VERITAS, demonstrate the crucial importance of the VHE band in understanding the non-thermal emission of extreme environments in our Universe. In some objects, the energy output in gamma rays can even outshine the rest of the broadband spectrum. The Cherenkov Telescope Array (CTA) is the next generation of IACTs, which, with cutting edge technology and a strategic configuration of ~100 telescopes distributed in two observing sites, in the northern and southern hemispheres, will reach better sensitivity, angular and energy resolution, and broader energy coverage than currently operational IACTs. With CTA we can probe the most extreme environments and considerably boost our knowledge of the non-thermal Universe. Keywords: black holes, relativistic jets, neutron stars, supernovae, clusters of galaxies, particle acceleration mechanisms, very-high-energy gamma rays, Cherenkov Telescope Array Observatory Published in RUNG: 10.01.2025; Views: 204; Downloads: 3 Full text (7,40 MB) This document has many files! More... |
5. The Cherenkov Telescope Array sensitivity to the transient skyValentina Fioretti, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution Abstract: The Cherenkov Telescope Array (CTA) will be able to perform unprecedented observations of the transient very high-energy sky. An on-line science alert generation (SAG) pipeline, with a required 30 second latency, will allow the discovery or follow-up of gamma ray bursts (GRBs) and flaring emission from active galactic nuclei, galactic compact objects and electromagnetic counterparts of gravitational waves or neutrino messengers. The CTA sensitivity for very short exposures does not only depend on the technological performance of the array (e.g. effective area, background discrimination efficiency). The algorithms to evaluate the significance of the detection also define the sensitivity, together with their computational efficiency in order to satisfy the SAG latency requirements. We explore the aperture photometry and likelihood analysis techniques, and the associated parameters (e.g. on-source to off-source exposure ratio, minimum number of required signal events), defining the CTA ability to detect a significant signal at short exposures. The resulting CTA differential flux sensitivity as a function of the observing time, obtained using the latest Monte Carlo simulations, is compared to the sensitivities of Fermi–LAT and current-generation IACTs obtained in the overlapping energy ranges. Keywords: very-high-energy gamma rays, Cherenkov Telescope Array (CTA) Observatory, transient astrophysical sources, gamma-ray bursts, active galactic nuclei Published in RUNG: 15.11.2024; Views: 453; Downloads: 6 Full text (784,43 KB) This document has many files! More... |
6. Monte Carlo study of a single SST-1M prototype for the Cherenkov Telescope ArrayJ. Juryšek, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution Abstract: The SST-1M telescope was developed as a prototype of a Small-Size-Telescope for the Cherenkov Telescope Array observatory and it has been extensively tested in Krakow since 2017. In this contribution we present validation of the Monte Carlo model of the prototype and expected
performance in Krakow conditions. We focus on gamma/hadron separation and mono reconstruction of energy and gamma photon arrival direction using Machine learning methods. Keywords: very-high-energy gamma rays, Cherenkov Telescope Array (CTA) Observatory, Small-Sized Telescopes (SSTs), SST-1M telescope prototype performance, Monte Carlo study Published in RUNG: 15.11.2024; Views: 433; Downloads: 5 Full text (590,25 KB) This document has many files! More... |
7. The Cherenkov Telescope Array performance in divergent modeA. Donini, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution Abstract: Two of the Key Science Projects of the Cherenkov Telescope Array (CTA) consist in performing a deep survey of the Galactic and Extragalactic sky, providing an unbiased view of the Universe at energies above tens of GeV. To optimize the time spent to perform the Extragalactic survey, a so-called “divergent mode” of the CTA was proposed as an alternative observation strategy to the traditional parallel pointing in order to increase its instantaneous field of view. The search for transient VHE sources would also benefit from an extended field of view. In the divergent mode, each telescope points to a position in the sky that is slightly offset, in the outward direction, from the center of the field of view. In this contribution, we present the first performance estimation from full Monte Carlo simulation of possible CTA divergent mode setups. Keywords: very-high-energy gamma rays, Cherenkov Telescope Array (CTA) Observatory, CTAO Key Science Projects (KSPs), galactic survey KSP, extragalactic survey KSP Published in RUNG: 15.11.2024; Views: 451; Downloads: 4 Full text (987,61 KB) This document has many files! More... |
8. Monte Carlo studies of combined MAGIC and LST1 observationsF. Di Pierro, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution Abstract: The Cherenkov Telescope Array (CTA) is the next generation very high energy gamma-ray
observatory covering the 20 GeV - 300 TeV energy range with unprecedented sensitivity, angular and energy resolution. With a site in each hemisphere, CTA will provide full-sky coverage. Four Large Size Telescopes (LSTs) in each site will be dedicated to the lowest energy range (20 GeV - 200 GeV). The first LST prototype has been installed at the CTA Northern site (Canary Island of La Palma, Spain) in October 2018 and it had been since then in commissioning phase. LST1 is located at about 100 m from MAGIC, a system of two 17m-diameter Imaging Atmospheric Cherenkov Telescopes designed to perform gamma-ray astronomy in the energy range from 50 GeV with standard trigger (30 GeV with SumTrigger) to 50 TeV and whose performance is very well established. The co-location of LST1 and MAGIC offers the great opportunity of cross-calibrating the two systems on an event-by-event basis. It will be indeed possible to compare the parameters of the same extensive air shower reconstructed by the two instruments. We investigated the performance that could be reached with combined observations. Keywords: very-high-energy gamma rays, Cherenkov Telescope Array (CTA) Observatory, Imaging Atmospheric Cherenkov Telescopes (IACTs), Large-Sized Telescopes (LSTs), Monte Carlo studies Published in RUNG: 15.11.2024; Views: 410; Downloads: 4 Full text (4,90 MB) This document has many files! More... |
9. Performance of the INFN Camera calibration device of the first Large Size Telescope in the Cherenkov Telescope ArrayM. Palatiello, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution Abstract: On October 10th 2018 started the commissioning of the first Large Size Telescope (LST)
prototype at the Cherenkov Telescope Array (CTA) northern site at the Observatorio del Roque de los Muchachos, Canary Island of La Palma (Spain). For a precise event energy reconstruction, an LST camera requires a uniform and constant calibration over a large dynamic range, up to 10[sup]4 photo-electrons (p.e.), for each camera photomultiplier tube (PMT). This paper describes the performance of the LST-1 camera calibration system (named CaliBox) in the first commissioning period and provides preliminary results of measurements of the light flat field. Keywords: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array (CTA) Observatory, CTAO North, Observatorio del Roque de los Muchachos, Large-Size Telescopes (LSTs) Published in RUNG: 14.11.2024; Views: 420; Downloads: 4 Full text (1,09 MB) This document has many files! More... |
10. The calibration of the first Large-Sized Telescope of the Cherenkov Telescope ArrayS. Sakurai, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution Abstract: The Cherenkov Telescope Array (CTA) represents the next generation of very high-energy gamma-ray observatory, which will provide broad coverage of gamma rays from 20 GeV to 300 TeV with unprecedented sensitivity. CTA will employ three different sizes of telescopes, and the Large-Sized Telescopes (LSTs) of 23-m diameter dish will provide the sensitivity in the lowest energies down to 20 GeV. The first LST prototype has been inaugurated in October 2018 at La Palma (Canary Islands, Spain) and has entered the commissioning phase. The camera of the LST consists of 265 PMT modules. Each module is equipped with seven high-quantum-efficiency Photomultiplier Tubes (PMTs), a slow control board, and a readout board. Ensuring high uniformity and precise characterization of the camera is the key aspects leading to the best performance and low systematic uncertainty of the LST cameras. Therefore, prior to the installation on site, we performed a quality check of all PMT modules. Moreover, the absolute calibration of light throughput is essential to reconstruct the amount of light received by the telescope. The amount of light is affected by the atmosphere, by the telescope optical system and camera, and can be calibrated using the ring-shaped images produced by cosmic-ray muons. In this contribution, we will show the results of off-site quality control of PMT modules and on-site calibration using muon rings. We will also highlight the status of the development of Silicon Photomultiplier modules that could be considered as a replacement of PMT modules for further improvement of the camera. Keywords: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array (CTA) Observatory, Large-Sized Telescopes (LSTs), LST-1 calibration, Photomultiplier Tubes (PMTs) Published in RUNG: 14.11.2024; Views: 439; Downloads: 4 Full text (3,10 MB) This document has many files! More... |