1. Disinfection of wastewater using porous Fe2O3 thin film : master's thesisRanin M. D. Ismail, 2024, master's thesis Abstract: The contamination of water bodies by microorganisms is seen as a highly significant issue that poses a threat to human and animal well-being. The primary objective of this master thesis is to develop and evaluate an environmentally friendly photoelectrochemical (PEC) method using porous Fe₂O₃ thin films for the disinfection of wastewater. This thesis presents the novel application of porous Fe₂O₃ thin films, which were produced using a cost-effective spin-coating technique, to improve the process of PEC disinfection. The PEC approach has been demonstrated to be highly effective in disinfection of wastewaters deliberately contaminated with E. coli bacteria. The crystallinity of the Fe₂O₃ porous thin films was confirmed using X-ray diffraction (XRD), while the film morphology was studied using scanning electron microscopy (SEM). The PEC disinfection procedures were conducted in the presence of two separate electrolytes, sodium sulfite (Na₂SO₃) and sodium chloride (NaCl), which were chosen for their specific roles in improving the effectiveness of disinfection. The PEC method shown efficacy in inactivating E. coli, with 45% of the bacteria being inactivated in the presence of 2 mM Na₂SO₃ and complete inactivation achieved with 20 mM NaCl. The findings suggest that the PEC disinfection process is a highly efficient and eco-friendly technology that can be used as a practical substitute for traditional disinfection methods. As a result, it has potential applications in ensuring public safety and safeguarding the environment, particularly in relation to wastewater treatment. Keywords: Treated wastewater, Disinfection, Escherichia coli, Photoelectrochemical oxidation, Fe2O3 thin films, Sodium sulfite and Sodium chloride. Published in RUNG: 09.09.2024; Views: 811; Downloads: 13 Full text (2,23 MB) |
2. SnO2-Containing Clinoptilolite as a Composite Photocatalyst for Dyes Removal fromWastewater under Solar LightAndraž Šuligoj, Jelena Pavlovič, Iztok Arčon, Nevenka Rajić, Nataša Novak Tušar, 2020, original scientific article Abstract: Due to their adsorbent, ion exchange and catalytic properties zeolites are suitable for a variety of applications. We report on the photocatalytic activity of a readily available and inexpensive natural zeolite clinoptilolite (Z) containing SnO2 (Sn-Z). The Sn-Z samples with 3–15 wt. % of Sn were prepared by using a precipitation–deposition method. Powder X-ray diffraction analysis showed that the zeolite structure was unaffected by the introduction of the Sn-phase. Diffuse reflectance UV/VIS spectra of the Sn-Z samples confirmed the presence of SnO2 and X-Ray absorption spectroscopy analyses suggested that the SnO2 particles mainly resided on the surface of the clinoptilolite, while ATR-FTIR analysis gave some clues that part of the SnO2 phase was incorporated in the pores of the zeolite. The presence of SnO2 in Sn-Z increased both adsorption capacity and photocatalytic performance which could be partially explained by higher surface area and partially with an increased negative potential of the surface. Adsorption and total degradation of methylene blue (MB) for the Sn-Z with the highest amount of Sn (15 wt.%) was about 30% and 45%, respectively, suggesting a synergetic effect between SnO2 and the clinoptilolite lattice. Reusability tests showed that these catalysts present a promising material for water purification. Keywords: SnO2, zeolite, SnO2-clinoptilolite composite, photocatalysis, solar light, methylene blue
removal, wastewater treatment Published in RUNG: 25.02.2020; Views: 3993; Downloads: 135 Full text (3,50 MB) |
3. |
4. Biogas production from brewery yeast in an EGSB reactorGregor Drago Zupančič, Milenko Roš, Miran Klemenčič, Matej Oset, Romana Marinšek-Logar, 2016, professional article Abstract: Experience over a five-year period of full throughput using anaerobic co-digestion of brewery yeast for biogas production is described in this contribution. The brewery, with a total amount of available yeast (0.7 v/v %), had a 26.2 % increase in COD load and a 38.5 % increase in biogas production resulting in an increase in the biomethane/natural gas substitution ratio in the brewery from 10 % to 16 %. Keywords: Anaerobic digestion, biogas production, brewery yeast, brewery wastewater, EGSB Published in RUNG: 21.04.2016; Views: 7403; Downloads: 0 This document has many files! More... |
5. |