Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


31 - 40 / 76
Na začetekNa prejšnjo stran12345678Na naslednjo stranNa konec
31.
Novel composite films from regenerated cellulose-glycerol-polyvinyl alcohol: Mechanical and barrier properties
Patricia Cazón, Gonzalo Velazquez, Manuel Vazquez, 2019, izvirni znanstveni članek

Opis: Cellulose is considered as an alternative for the demand of biocompatible and environmentally friendly food packaging. The aim of this study was to evaluate a composite film from regenerated cellulose combined with polyvinyl alcohol. Glycerol was used as a plasticizer. Mathematical models were used to describe the effect of the film structure on the mechanical (tensile strength, percentage of elongation at break) and barrier properties (water vapour permeability, light-barrier properties and transparency). The morphology, structural and thermal properties were evaluated by spectral analysis (FT-IR and UV-VIS-NIR), scanning electron microscopy and dif- ferential scanning calorimetry. Models predict cellulose-glycerol-polyvinyl alcohol films with tensile strength values from 25.9 to 369 MPa, similar to that of synthetic polymer films. The elongation at break of the developed films (0.89–18.7%) was lower than that of synthetic polymer films. The water vapour permeability obtained (2.32·10−11 - 3.01·10−11 g/s·m·Pa) was higher than that of petrochemical-based plastics. Cellulose films re- inforced with polyvinyl alcohol showed a smooth surface. Results showed that it is viable to accomplish com- posite films from cellulose-polyvinyl alcohol-glycerol with enhanced mechanical properties. The obtained films showed top values of transparency. The addition of glycerol resulted in films with a UV protective effect which could be important in food packaging to prevent lipid oxidative deterioration.
Ključne besede: Regenerated cellulose, Tensile strength, Water vapor permeability, Anti-plasticizer, DSC, UV protection
Objavljeno v RUNG: 14.12.2020; Ogledov: 2260; Prenosov: 0
Gradivo ima več datotek! Več...

32.
Characterization of bacterial cellulose films combined with chitosan and polyvinyl alcohol: Evaluation of mechanical and barrier properties
Patricia Cazón, Gonzalo Velazquez, Manuel Vazquez, 2019, izvirni znanstveni članek

Opis: Bacterial cellulose (BC) produced by Komagataeibacter xylinus is a biomaterial with a unique three-dimensional structure. To improve the mechanical properties and reinforce the BC films, they were immersed in polyvinyl alcohol (0–4%) and chitosan (0–1%) baths. Moisture content, mechanical properties and water vapour perme- ability were measured to assess the effect of polyvinyl alcohol and chitosan. The morphology, optical, structural and thermal properties were evaluated by scanning electron microscopy, spectral analysis, thermogravimetry and differential scanning calorimetry. Results showed that moisture content was significantly affected by the chitosan presence. Tensile strength values in the 20.76–41.65 MPa range were similar to those of synthetic polymer films. Percentage of elongation ranged from 2.28 to 21.82% and Young's modulus ranged from 1043.88 to 2247.82 MPa. The water vapour permeability (1.47×10−11–3.40×10−11 g/m s Pa) decreased with the addition of polyvinyl alcohol. The developed films own UV light barrier properties and optimal visual appearance.
Ključne besede: Films, Bacterial cellulose, Water vapor permeability, Chitosan, Polyvinyl alcohol, UV protection
Objavljeno v RUNG: 14.12.2020; Ogledov: 2218; Prenosov: 0
Gradivo ima več datotek! Več...

33.
Regenerated cellulose films combined with glycerol and polyvinyl alcohol: Effect of moisture content on the physical properties
Patricia Cazón, Gonzalo Velazquez, Manuel Vazquez, 2020, izvirni znanstveni članek

Opis: Regenerated cellulose-based films combined with glycerol and polyvinyl alcohol (PVOH) show interesting UV- light barrier properties, with potential application in food packaging to prevent oxidative deterioration. How- ever, these materials are sensitive to moisture, and their properties could be modified as a function of the relative humidity. Hence, the objective of the present work was to evaluate the changes in the main properties of re- generated cellulose-glycerol-PVOH films depending on the relative humidity. Using the GAB adsorption iso- therms, the moisture content was related with the water activity of the films at several relative humidity conditions. According to the obtained results, water molecules manifested a plasticizing effect modifying the mechanical, water vapour permeability and optical properties of the developed films. Tensile strength and Young’s modulus values ranged from 92.65 to 17.57 MPa and from 3639.09 to 227.89 MPa, respectively. Both of them decreased when the moisture content increased. The mechanical resistance to deformation of films enhanced at high moisture content, changing from 5.88 to 15.97% and from 0.59 to 2.97 mm in the tensile and puncture test, respectively. This effect was also observed for the burst strength. Water vapour permeability increased from 5.15⋅10?10 to 5.44⋅10?9 g/ms Pa when the moisture content increased, being more significative at higher values. No significant variations were observed in the UV-VIS transmittance at different moisture contents. The obtained results allow expanding the knowledge of the behavior of films based on regenerated cellulose.
Ključne besede: Adsorption isotherms, Plasticization, Regenerated cellulose, Water vapour permeability, Moisture content
Objavljeno v RUNG: 09.12.2020; Ogledov: 2401; Prenosov: 0
Gradivo ima več datotek! Več...

34.
Regenerated cellulose films with chitosan and polyvinyl alcohol: Effect of the moisture content on the barrier, mechanical and optical properties
Patricia Cazón, Manuel Vazquez, Gonzalo Velazquez, 2020, izvirni znanstveni članek

Opis: The aim of this research was to evaluate the effect of moisture content on the mechanical, barrier and optical properties of films obtained from regenerated cellulose with chitosan and polyvinyl alcohol equilibrated at several relative humidity conditions. The experimental moisture adsorption isotherms were fitted using the Guggenheim-Anderson-DeBoer model. The adsorption isotherm showed a typical type II sigmoidal shape. The highest moisture content (27.53 %) was obtained at a water activity of 0.9. The water vapour permeability values increased up to 6.34·10−11 g/ m s Pa as the moisture content of the films increased. Tensile strength, percentage of elongation, Young’s modulus, burst strength and distance to burst showed a significant plasticizing effect of the water molecules. Results suggest that interactions between film components and water molecules decrease the transmittance in the UV region and the transparency. Consequently, water molecules improve the UV-barrier properties of the films and increasing the opacity.
Ključne besede: Adsorption isotherms, Plasticization, Regenerated cellulose, Chitosan, Polyvinyl alcohol, Water vapour permeability, Moisture content
Objavljeno v RUNG: 09.12.2020; Ogledov: 2597; Prenosov: 0
Gradivo ima več datotek! Več...

35.
36.
37.
38.
Episode 4: Toxic bromate removed from drinking water : MRS Bulletin Materials News Podcast
Tina Skorjanc, Dinesh Shetty, 2020, radijski ali tv dogodek

Ključne besede: bromate, covalent organic framework, water purification
Objavljeno v RUNG: 03.09.2020; Ogledov: 2403; Prenosov: 0
Gradivo ima več datotek! Več...

39.
Highly efficient carcinogenic bromate removal from water by a cationic covalent organic framework
Tina Skorjanc, Dinesh Shetty, Felipe Gandara, Liaqat Ali, Ali Trabolsi, 2019, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: bromate, covalent organic frameworks, Zincke reaction, adsorption, water purification
Objavljeno v RUNG: 03.09.2020; Ogledov: 2668; Prenosov: 0
Gradivo ima več datotek! Več...

40.
Iskanje izvedeno v 0.05 sek.
Na vrh