Repozitorij Univerze v Novi Gorici

Izpis gradiva
A+ | A- | Pomoč | SLO | ENG

Naslov:Machine learning-based analyses using surface detector data of the Pierre Auger Observatory
Avtorji:ID Hahn, Steffen (Avtor)
ID Filipčič, Andrej (Avtor)
ID Lundquist, Jon Paul (Avtor)
ID Shivashankara, Shima Ujjani (Avtor)
ID Stanič, Samo (Avtor)
ID Vorobiov, Serguei (Avtor)
ID Zavrtanik, Danilo (Avtor)
ID Zavrtanik, Marko (Avtor), et al.
Datoteke:.pdf UHECR2024_091.pdf (1,48 MB)
MD5: AA90224C7A6F34EF52C8C61CD7ED051E
 
URL https://pos.sissa.it/484/091/
 
URL https://pos.sissa.it/484/091/pdf
 
To gradivo ima še več datotek. Celoten seznam je na voljo spodaj.
Jezik:Angleški jezik
Vrsta gradiva:Delo ni kategorizirano
Tipologija:1.08 - Objavljeni znanstveni prispevek na konferenci
Organizacija:UNG - Univerza v Novi Gorici
Opis:The Pierre Auger Observatory is the largest detector for the study of extensive air showers induced by ultra-high-energy cosmic rays (UHECRs). Its hybrid detector design allows the simultaneous observation of different parts of the shower evolution using various detection techniques. To accurately understand the physics behind the origin of UHECRs, it is essential to determine their mass composition. However, since UHECRs cannot be measured directly, estimating their masses is highly non-trivial. The most common approach is to analyze mass-sensitive observables, such as the number of secondary muons and the atmospheric depth of the shower maximum. An intriguing part of the shower to estimate these observables is its footprint. The shower footprint is detected by ground-based detectors, such as the Water-Cherenkov detectors (WCDs) of the Surface Detector (SD) of the Observatory, which have an uptime of nearly 100%, resulting in a high number of observed events. However, the spatio-temporal information stored in the shower footprints is highly complex, making it very challenging to analyze the footprints using analytical and phenomenological methods. Therefore, the Pierre Auger Collaboration utilizes machine learning-based algorithms to complement classical methods in order to exploit the measured data with unprecedented precision. In this contribution, we highlight these machine learning-based analyses used to determine high-level shower observables that help to infer the mass of the primary particle, with a particular focus on analyses using the shower footprint detected by the WCDs and the Surface Scintillator Detectors (SSD) of the SD. We show that these novel methods show promising results on simulations and offer improved reconstruction performance when applied to measured data.
Ključne besede:ultra-high-energy cosmic rays (UHECRs), extensive air showers, Pierre Auger Observatory, surface detector, Water-Cherenkov detectors (WCDs), Surface Scintillator Detectors (SSDs), UHECR mass composition, air-shower footprint, machine learning
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Leto izida:2025
Št. strani:8
PID:20.500.12556/RUNG-10057 Novo okno
COBISS.SI-ID:236155139 Novo okno
DOI:10.22323/1.484.0091 Novo okno
NUK URN:URN:SI:UNG:REP:FVAXHCNT
Datum objave v RUNG:16.05.2025
Število ogledov:396
Število prenosov:6
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del monografije

Naslov:Proceedings of the 7th International Symposium on Ultra High Energy Cosmic Rays : UHECR2024
Kraj izida:Trieste, Italy
Založnik:Sissa Medialab
Leto izida:2025

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P1-0031
Naslov:Večglasniška astrofizika

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Datoteke

Podatki se nalagajo...

Nazaj