Naslov: | Weak forms of shadowing in topological dynamics |
---|
Avtorji: | ID Kryzhevich, Sergey, University of Nova Gorica (Avtor) ID Cherkashin, Danila, Saint-Petersburg State University (Avtor), et al. |
Datoteke: |
Gradivo nima datotek, ki so prostodostopne za javnost. Gradivo je morda fizično dosegljivo v knjižnici fakultete, zalogo lahko preverite v COBISS-u. |
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | UNG - Univerza v Novi Gorici
|
---|
Opis: | We consider continuous maps of compact metric spaces. It is proved that every pseudotrajectory with sufficiently small errors contains a subsequence of positive density that is point-wise close to a subsequence of an exact trajectory with the same indices. Also, we study homeomorphisms such that any pseudotrajectory can be shadowed by a finite number of exact orbits. In terms of numerical methods this property (we call it multishadowing) implies possibility to calculate minimal points of the dynamical system.
We prove that for the non-wandering case multishadowing is equivalent to density of minimal points. Moreover, it is equivalent to existence of a family of $\varepsilon$-networks ($\varepsilon > 0$) whose iterations are also $\varepsilon$-networks. Relations between multishadowing and some ergodic and topological properties of dynamical systems are discussed. |
---|
Ključne besede: | Topological dynamics, minimal points, invariant measure, shadowing, chain recurrence, $\varepsilon$-networks, syndetic sets |
---|
Verzija publikacije: | Recenzirani rokopis |
---|
Leto izida: | 2017 |
---|
Št. strani: | 26 |
---|
Številčenje: | online first |
---|
PID: | 20.500.12556/RUNG-3185-7d83ccb7-bc05-c046-8a6c-5cec326badb3 |
---|
COBISS.SI-ID: | 4868859 |
---|
DOI: | http://dx.doi.org/10.12775/TMNA.2017.020 |
---|
NUK URN: | URN:SI:UNG:REP:6HPH6AQ7 |
---|
Datum objave v RUNG: | 27.07.2017 |
---|
Število ogledov: | 5098 |
---|
Število prenosov: | 0 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |